Rozprawa doktorska

Mgr inż. Krzysztof Śledziewski

PRACA STALOWO-BETONOWEJ BELKI ZESPOŁONEJ Z UWZGLĘDNIENIEM ZARYSOWANIA PŁYTY

Promotor:

Dr hab. inż. Marek Łagoda, prof. IBDiM

Lublin 2015
Stworzenie czegoś nowego, a jednocześnie zgodnego z tym, co wiadomo dotychczas jest niezwykle trudne.

Richard P. Feynman
SPIS TREŚCI

WYKAZ WAŻniejszych OZNACZEŃ ... 5

1. WSTĘP ... 9
 1.1. Geneza tematu ... 9
 1.2. Przedmiot, cel i zakres pracy .. 11
 1.3. Teza pracy ... 15

2. AKTUALNY STAN WIEDZY W DZIEDZINIE ANALIZY BELEK ZESPOLONYCH 16
 2.1. Wprowadzenie ... 16
 2.2. Nośność i sztywność belek zespolonych jako przedmiot badań 16
 2.3. Praktyka projektowa ... 23
 2.4. Zalecenia normowe .. 24
 2.4.1. Uwagi ogólne .. 24
 2.4.2. Ujęcie stanu zarysowania płyty pomostu według PN-EN 1994-2 25
 2.5. Przegląd wybranych prac analitycznych i badawczych .. 28
 2.6. Ocena stanu wiedzy .. 33

3. BADANIA DOŚWIADCZALNE ... 34
 3.1. Wprowadzenie ... 34
 3.2. Program badań ... 35
 3.3. Elementy badawcze ... 36
 3.3.1. Podstawowe dane belek .. 36
 3.3.2. Sposób wykonania belek .. 37
 3.4. Przygotowanie i przebieg badań .. 38
 3.4.1. Stanowisko badawcze .. 38
 3.4.2. Realizacja obciążenia belek ... 39
 3.4.3. Punkty pomiarowe i mierzone wielkości .. 41

4. ANALIZA WYNIKÓW BADAŃ ... 43
 4.1. Badania wstępne ... 43
 4.1.1. Uwagi ogólne .. 43
 4.1.2. Badania betonu .. 43
 4.2. Badania zasadnicze ... 44
 4.2.1. Uwagi ogólne .. 44
 4.2.2. Wyniki propagacji rys w czasie ... 45
 4.2.3. Wyniki pomiarów odkształceń (naprężeń) ... 49
 4.2.4. Wyniki pomiarów ugięć (przemieszczeń) ... 55
 4.2.5. Wyniki pomiarów kąta obrotu przekroju belek ... 57
 4.2.6. Wyniki pomiarów poślizgu pomiędzy płytą a dźwigarem 58
 4.3. Wnioski z przeprowadzonych doświadczeń badawczych .. 58

5. ANALIZA WYTRZYMAŁOŚCIOWA RZECZYWISTEJ KONSTRUKCJI MOSTU 60
 5.1. Wprowadzenie ... 60
 5.2. Model badanej konstrukcji .. 60
 5.2.1. Opis modelu ... 60
 5.2.2. Materiały i montaż konstrukcji .. 62
 5.2.3. Sposób badania mostu .. 62
 5.3. Rysy w belkach zespolonych ... 64
 5.3.1. Uwagi ogólne .. 64
 5.3.2. Mechanizm tworzenia się rys .. 65
 5.3.3. Szerokość rozważcia rys ... 67
 5.4. Analiza wytrzymałościowa badanych dźwigarów zespolonych 69
 5.5. Wnioski z przeprowadzonej analizy ... 75
6. SYMULACJA KOMPUTEROWA MECHANIZMU TWORZENIA SIĘ RYS W DŻWIGARZE......76
 6.1. Wprowadzenie ..76
 6.2. Metoda elementów skończonych ..77
 6.3. Model betonu plastycznego ze zniszczeniem ...80
 6.3.1. Uwagi ogólne ...80
 6.3.2. Opis matematyczny ...81
 6.3.3. Hipoteza Druckera – Prager ...83
 6.3.4. Identyfikacja parametrów betonu ściskanego ...86
 6.3.5. Identyfikacja parametrów betonu rozciąganej ...89
 6.3.6. Dośćatkowe założenia w modelu materiału ..91
 6.4. Opis modelu obliczeniowego belki ...92
 6.4.1. Uwagi ogólne ...92
 6.4.2. Założenia do modelu belki ..92
 6.4.3. Dane materiałowe ..93
 6.4.4. Model obliczeniowy i jego kalibracja ...96
 6.5. Wyniki analiz numerycznych ...98
 6.5.1. Uwagi ogólne ...98
 6.5.2. Obraz uszkodzenia płyty rozciąganej ..98
 6.5.3. Analiza ugięć i wykresów naprężeń normalnych ...99
 6.6. Wnioski z przeprowadzonych symulacji ..101

7. PODSUMOWANIE ..103

LITERATURA ..107
Załącznik A: Stanowisko laboratoryjne ..115
Załącznik B: Dokumentacja fotograficzna przebiegu badań doświadczalnych116
Załącznik C: Atesty stali i receptura mieszanki betonowej ..124
Streszczenie ...128
Abstract ...129
WYKAZ WAŻNIEJSZYCH OZNACZEŃ

Poniżej przedstawiono najważniejsze oznaczenia i symbole stosowane w pracy. Ze względu na różne znaczenie niektórych symboli oraz zachowanie oryginalnej postaci cytowanych wzorów, niektóre symbole i oznaczenia są objaśnione w tekście przy odpowiednich pozycjach.

Litery alfabetu łacińskiego

a ramię wypadkowej naprężeń działających na przekrój poprzeczny

*a*ₐ odległość osi obojętnej przekroju zespolonego od środka ciężkości przekroju stalowego

*a*ₖ odległość osi obojętnej przekroju zespolonego od środka ciężkości przekroju betonowego

b szerokość półki przekroju stalowego; szerokość płyty, połowa odległości między przyległymi środkami lub odległość między środkiem i wolną krawędzią półki

*b*ₜ całkowita szerokość półki współpracującej z belką

*b*ₖₜ szerokość współpracująca w środku rozpiętości przęsła podpartego na obu końcach

*b*ₖ₂ szerokość współpracująca na podporze wewnętrznej

c grubość otulenia zbrojenia podłużnego

d wysokość użyteczna przekroju

*d*ₖ odległość osi obojętnej przekroju zespolonego od górnej krawędzi przekroju zespolonego

f ugięcie belki, płyty

*f*ₘ średnia wytrzymałość betonu na ściskanie

*f*ₘₘ średnia wytrzymałość betonu na rozciąganie

*f*ₘₖ charakterystyczna granica plastyczności stali

*h*ₖ wysokość (grubość) płyty betonowej,
Wykaz ważniejszych oznaczeń

\(k \) współczynnik uwzględniający efekt równomiernych samorównowazących się naprężeń

\(k_c \) współczynnik uwzględniający charakter przebiegu naprężeń w przekroju w chwili bezpośrednio poprzedzającej zarysowanie

\(l \) rozpiętość teoretyczna dźwigara

\(n \) stosunek modułów sprężystości stali i betonu

\(u \) przemieszczenie

\(s_{rm} \) średni odstęp między rysami w betonie

\(w_k \) szerokość rozważania rysy

\(x \) wysokość strefy ściskanej

\(z_0 \) odległość pionowa

\(A \) pole efektywnego poprzecznego przekroju zespolonego z pominięciem betonu rozciągane

\(A_a \) pole przekroju poprzecznego stali konstrukcyjnej

\(A_c \) pole przekroju poprzecznego betonowego

\(A_{ct} \) pole przekroju poprzecznego rozciąganej strefy betonu

\(A_p \) pole przekroju stali sprężającej

\(A_s \) pole przekroju poprzecznego zbrojenia podłużnego betonu

\(A_{st} \) sprowadzone pole przekroju poprzecznego rozciąganej zbrojenia podłużnego betonu

\(B \) sztywność giętna przekroju zespolonego; nośność przekroju betonowego

\(B_a \) sztywność giętna części stalowej przekroju zespolonego

\(B_c \) sztywność giętna części betonowej przekroju zespolonego

\(B_0 \) sztywność początkowa

\(B_1 \) sztywność giętna przekroju niezarysowanego

\(B_2 \) sztywność giętna przekroju zarysowanego

\(E_a \) moduł sprężystości stali

\(E_c \) styczny moduł sprężystości betonu

\(E_{c,\text{eff}} \) efektywny moduł sprężystości betonu

\(E_{cm} \) sieczny moduł sprężystości betonu

\(E_0 \) początkowy, styczny moduł sprężystości betonu

\(I \) geometryczny moment bezwładności efektywnego przekroju zespolonego z pominięciem betonu rozciągane

\(I_a \) geometryczny moment bezwładności pola przekroju stali konstrukcyjnej
Wykaz ważniejszych oznaczeń

\(I_e \) geometryczny moment bezwładności przekroju zespolonego

\(I_1 \) geometryczny moment bezwładności efektywnego, sprowadzonego do stali przekroju z uwzględnieniem betonu rozciągającego, jako niezarysowanego

\(I_2 \) geometryczny moment bezwładności efektywnego, sprowadzonego do stali przekroju z pominięciem betonu rozciągającego, lecz z uwzględnieniem zbrojenia w obszarze szerokości współpracującej

\(M \) moment zginający działający na przekrój zespolony w przypadku odpowiedniej kombinacji obciążeń

\(M_a \) moment zginający działający na przekrój stalowy

\(M_{cr} \) moment zginający powodujący zarysowanie części betonowej

\(N \) nośność graniczna przekroju zespolonego

\(N_a \) siła normalna działająca na przekrój stalowy belki zespolonej

\(N_{cr} \) siła krytyczna, rysująca płytę betonową belki zespolonej

\(N_s \) siła rozciągająca w płycie, zależna od momentu \(M \)

\(S \) nośność przekroju stalowego belki zespolonej

\(W_1 \) wskaźnik wytrzymałości przekroju zespolonego na zginanie

\(W_{zs} \) wskaźnik wytrzymałości przekroju zastępczego w przypadku zbrojenia podłużnego betonu

Liter alfabetu greckiego

\(a, \beta, \gamma \) współczynniki; parametry

\(\alpha_s \) iloraz

\(\beta_1 \) współczynnik zależny od przyczepności prętów zbrojeniowych

\(\beta_2 \) współczynnik zależny od czasu działania i powtarzalności obciążeń

\(\varepsilon \) odkształcenie

\(\varepsilon_c \) odkształcenie jednostkowe w betonie

\(\varepsilon_{cl} \) odkształcenie betonu przy ściskaniu odpowiadające największemu naprężeniu

\(\varepsilon_{cul} \) odkształcenie graniczne betonu przy ściskaniu

\(\varepsilon_s \) odkształcenie zbrojenia

\(\varepsilon_{sm} \) średnie odkształcenie zbrojenia

\(\rho_s \) parametr; stopień zbrojenia

\(\sigma \) naprężenia

\(\sigma_c \) naprężenia w betonie
σₚ — naprężenia w zbrojeniu
σₛₒ — naprężenia w zbrojeniu rozciągającym z pominięciem wpływu betonu na odcinkach między rysami
ϕ — średnica (wymiar) pręta zbrojenia
Δσ — zakres naprężeń
Δσₛ — przyrost naprężeń w stali zbrojeniowej na skutek wpływu betonu na odcinkach między rysami
1. WSTĘP

1.1. GENEZA TEMATU

Konstrukcje zespolone zaliczane są do najbardziej interesujących rozwiązań ustrojów nośnych w technice budowlanej. Wynika to bezpośrednio ze szczególnych wymagań w odniesieniu do teorii tych konstrukcji jak i ich twórczego kształtowania. Części składowe przekroju poprzecznego dźwigara wykonane są z różnych materiałów, o różnych cechach fizycznych, które współpracują ze sobą, dzięki zastosowaniu specjalnych łączników (opórek, sworzni, listew). Poszczególne elementy dobiera się w taki sposób, aby maksymalnie wykorzystać zarówno ich właściwości wytrzymałościowe jak i cechy użytkowe, w odniesieniu do ich usytuowania w konstrukcji. Typowym przykładem efektywnego wykorzystania właściwości różnych materiałów jest stalowy dźwigar współpracujący ze zbrojoną, betonową płyta pomostową w mostach jednoprzęsłowych.

W przypadku dźwigarów wykonanych z tych samych materiałów (np. jako betonowe, drewniane), ale w różnych etapach wytwórczych, również mamy do czynienia z konstrukcją zespoloną. Cechą decydującą o tym są odmienne właściwości fizyczne i wytrzymałościowe połączonych elementów. Układ zespolony występuje również, kiedy elementy wykonane z identycznego tworzywa nie są połączone ze sobą w sposób zapewniający całkowitą zgodność odkształceń. Wówczas połączenia takie traktowane są, jako podatne [Łagoda M. 1981].

Współcześnie największe korzyści widzi się w zastosowaniu konstrukcji zespolonych typu stal – beton [Nakamura i in. 2002]. Są one głównie wykorzystywane przy budowie mostów, ale stosuje się je również w innych dziedzinach budownictwa, zwłaszcza w budownictwie przemysłowym [Johnson 2008].

Początki konstrukcji zespolonych datują się zasadniczo na lata trzydzieste ubiegłego wieku, chociaż pierwszy most drogowy o pomoście betonowym współpracującym z belkami

Pomimo, tego można zauważyć, że w dotychczasowych badaniach skupiano się z reguły na określaniu nośności granicznej całego przekroju zespolonego, bądź też jego poszczególnych części składowych (dźwigara stalowego, płyty betonowej, elementów i sposobów zespolenia) [Nie i Cai 2003; Lebet i Thomann 2007; Biegus i Lorenc 2014; Gara i in. 2014]. Niewiele miejsca poświęcono natomiast zagadnieniu zachowania się zespolonej konstrukcji z zarysowaną płyta żelbetowa. Podejście takie wynikało zarówno ze złożoności problemu jak i z powodu nie występowania rys w konstrukcji o malej rozpiętości przęsel oraz małym udziale obciążeń użytkowych w stosunku do obciążeń całkowitych. Dodatkowo sprawę komplikował brak normy krajowej do projektowania mostów zespolonych. Choć, jak wspomniano, belki zespolone są stosowane także w innych konstrukcjach, to osiągają w nich znacznie mniejsze rozpiętości niż w przypadku mostów, stąd też problem zarysowania rozciąganej płyty żelbetowej w mostownictwie występuje w większym stopniu.
Znaczenie samego zagadnienia zarysowania w kontekście konstrukcji zespółonych jest wciąż tematem dyskusji. Niepodważalnym faktem jest ich występowanie, aczkolwiek bezpieczeństwo konstrukcji nie jest tu w żaden sposób zagrożone. W niektórych krajach europejskich, w tym w Polsce dopuszczono jest występowanie rys o szerokości 0,2 mm nawet w wilgotnym środowisku, przy ekspozycji elementu na sole odladzające [Ducret i Lebet 1999]. Oczywiście jest to możliwe dzięki stosowaniu szeregu różnych zabiegów technologicznych [Collings 2005], między innymi: właściwej pielęgnacji betonu, odpowiedniej kolejności betonowania, kontrolowaniu przemieszczeń pionowych nad podporami czy też podniesieniu wykonawczemu [Łagoda G. i Lagoda M. 1989; Łagoda M. 1989; Chen i Duan 2014].

1.2. PRZEDMIOT, CEL I ZAKRES PRACY

Przedmiotem pracy są belki zespólone typu stal – beton złącznikami w postaci sworzni. W rozprawie analizuje się belki dwuprzęsłowe, jako układy ciągłe, w których występują strefy momentów ujemnych z rozciągąną płytą betonową.
Zasadniczym celem pracy jest rozpoznanie i sprecyzowanie naukowych podstaw uwzględnienia sztywności zarysowanego betonu w konstrukcji zespolonej typu stal – beton. Szczegółowo można wyróżnić następujące cele cząstkowe o charakterze zadań naukowych:

- określenie wpływu sztywności zarysowanego betonu w płycie dźwigara zespołonego na efektywność wykorzystania (nośność) przekroju konstrukcji i tym samym racjonalne zużycie materiałów,
- stworzenie adekwatnego modelu obliczeniowego konstrukcji zespołonych mostów zarówno drogowych jak i kolejowych o schematach statycznych wywołujących ujemne momenty zginające.

Na rysunku 1.1 przedstawiono miejsce rozważanego zagadnienia w tematyce związanej z rozpatrywanym obszarem badań.

Rys. 1.1. Usytuowanie problemu

Jak widać efekty rozprawy nie tylko będą rozwiązaniem ważnego w mostownictwie zadania naukowego, ale dostarczą narzędzia do zgodnego z podstawami naukowymi projektowania mostów zespołonych. Pozwoli to na lepsze, bliższe rzeczywistości projektowanie obiektów inżynierskich i uzyskanie znacznych oszczędności przy budowie mostów.

Do realizacji założonych celów pracy zostaną wykorzystane metody analityczne mechaniki konstrukcji, badania doświadczalne przeprowadzone w skali naturalnej i analizy wytrzymałościowe obiektów rzeczywistych oraz analizy numeryczne (rys. 1.2).

Powszechnie wiadomo, że stan zarysowania w konstrukcjach zespołonych jest zagadnieniem złożonym, do tego uzależnionym od wielu czynników, wśród których do najważniejszych należą charakterystyki geometryczne przekroju, schemat statyczny konstrukcji, charakter obciążenia (obciążenie stałe, zmienne, pochodzące od czynników technologicznych), poślizg pomiędzy betonem i zbrojeniem, przyczepność płyty do dźwigara oraz cechy wytrzymałościowe i odkształcenia materiałów elementów składowych belki.
zespolonej, w tym, w szczególności betonu. W przypadku zadanego przekroju i schematu obciążeń belki zespolonej istotnym zagadnieniem przy analizie jego jest również wpływ czynników związanych z parametrem czasu, który w niniejszej pracy został pominięty.

Rys. 1.2. Schemat organizacji niniejszej rozprawy

Ze względu na możliwość występowania jednocześnie zbyt wielu czynników wpływających na zarysowanie płyty żelbetowej, zdecydowano się pominać w pracy niektóre czynniki zależne od parametru czasu (skurcz i pełzanie betonu), a skupić się jedynie na tych czynnikach, których wpływ przy projektowaniu konkretnych obiektów można określić w sposób zdeterminowany.

Pominięcie parametru czasu eliminuje z analizy wpływ czynników reologicznych na stan odkształceń i naprężeń. Wpływ tego nie można pominać, jeśli analizuje się rozkład naprężeń w konstrukcji poddanej długotrwałemu obciążeniu (także skurczem betonu) w czasie. Podobna sytuacja jest w przypadku odkształceń konstrukcji. Jest to istotny problem w całościowej analizie konstrukcji zespolonej, jednak z uwagi na to, że wychodzi on poza zakres rozprawy, w dalszej części nie będzie omawiany. Wpływ czynników reologicznych na
starzenie się konstrukcji zespolonych (choć bez uwzględnienia sztywności betonu rozciągającego) jest szczegółowo omówiony w literaturze przedmiotu chociażby w pracach Furtaka [1978, 1987 i 1999], bądź też w pracach [Sattler 1959; Zamorski i Gremza 2006].

Rozprawa ma charakter pracy teoretyczno–doświadczalnej. Pierwszym jej etapem jest analiza stanu wiedzy w dziedzinie konstrukcji zespolonych, w szczególności konstrukcji statycznie niewyznaczalnych z betonem w strefach rozciąganych. Na tym etapie poddano również ocenie dotychczasową praktykę projektową oraz przedstawiono ujęcie stanu zarysowania płyty pomostu według obecnie obowiązujących przepisów (rozdział 2).

Kolejny etap to badania laboratoryjne zespolonych dźwigarów próbnych o zbliżonej skali do rzeczywistej (rozdział 3), na podstawie, których zebrano dane do modelowania numerycznego zjawisk, zachodzących w rozciąganej płycie podczas zginania belki zespolonej. Rezultaty badań i ich analizę w kontekście znanych hipotez i przeprowadzonego przeglądu literatury przedstawiono w rozdziale 4.

Następnie, jako uzupełnienie i rozwinięcie części doświadczalnej oraz aby określić zachowanie się konstrukcji zespolonej z rozciągana płyta współpracującą w warunkach rzeczywistych przeprowadzono analizę wytrzymałościową wybranego obiektu mostowego. W tym celu wykorzystano wyniki badań, które były wykonywane podczas próbnych obciążeń statycznych Mostu Północnego w Warszawie (rozdział 5). Analiza zawiera ocenę współdziałania betonu między rysami w przenoszeniu zginania działającego na przekrój zespolony dźwigara. Dodatkowo wyznaczono średnie odległości między powstałymi rysami i ich szerokość rozwarcia.

Ostatnim etapem dysertacji jest budowa matematycznego modelu numerycznego. W rozdziale 6 przeprowadzono symulację komputerową mechanizmu tworzenia się rys w belkach poddanych badaniom laboratoryjnym. Na tym etapie została również przeprowadzona maksymalizacja zbieżności otrzymywanych wyników obliczeniowych z pomierzonymi oraz minimalizacja liczby elementów skończonych i komplikacji siatki elementów. Istotną częścią tego rozdziału jest również identyfikacja parametrów konstytutycznych na podstawie znanych wytrzymałości betonu, a także opis modelu betonu plastycznego ze zniszczeniem.

Pracę podsumowano w rozdziale 7, w którym wskazano również kierunki dalszych badań. W zakończeniu odniesiono się także do szczegółowych celów, jakie zostały sformułowane w rozprawie.

Dodatkowo na końcu rozprawy zamieszczono trzy załączniki, w których przedstawiono odpowiednio stanowisko laboratoryjne wraz z aparaturami pomiarowymi (załącznik A),
dokumentację fotograficzną z przebiegu badań doświadczalnych (załącznik B), a także atesty otrzymane od producentów stali prętów zbrojeniowych oraz recepturę mieszanki betonowej (załącznik C).

1.3. TEZA PRACY

Na podstawie rozpoznania literaturowego oraz przeprowadzonych analiz własnych formułuje się w niniejszej pracy następującą tezę:

Uwzględnienie sztywności zarysowanego betonu w płycie dźwigara zespołonego pozwala lepiej opisać zachowanie się statyczne dźwigara przy przenoszeniu obciążeń, racjonalniej go kształtować co ma również pozytywny wpływ na efekty ekonomiczne.
2. AKTUALNY STAN WIEDZY W DZIEDZINIE ANALIZY BELEK ZESPOLONYCH

2.1. WPROWADZENIE

W rozdziale tym został poddany ocenie krytycznej stan wiedzy w dziedzinie konstrukcji zespolonych, w szczególności konstrukcji statycznie niewyznaczalnych z betonem w strefach rozciąganych. W tym miejscu należy podkreślić, iż dorobek naukowy dotyczący problematyki sztywności zarysowanego betonu w płycie dźwigara zespolonego nie jest zbyt duży. Wynika to przede wszystkim z dotychczasowego stosowania technologii pozwalającej przyjmować założenia o pomijaniu betonu rozciągającego w składzie przekroju. W miejscach zarysowania rzeczywiście następuje wyłączenie betonu z współpracy z dźwigarem stalowym. Natomiast na odcinkach między rysami zbrojenie podłużne oraz łączniki zapewniają przynajmniej częściową współpracę betonu z dźwigarem.

Przedstawiono także podstawowe – ale związane z główną tematyką niniejszej pracy – zagadnienia dotyczące nośności i sztywności belek zespolonych oraz dotychczasową praktykę projektową. Opisano również ujęcie stanu zarysowania płyty pomostu wg Eurokodu 4 cz. 2.

2.2. NOŚNOŚĆ I SZTYWNOŚĆ BELEK ZESPOLONYCH JAKO PRZEDMIOT BADAŃ

Przy wymiarowaniu konstrukcji wymaganą miarą bezpieczeństwa jest z reguły nośność graniczna rozumiana, jako maksymalna wartość obciążenia, które jest zdolna przenieść belka. Obecnie są stosowane dwa sposoby ustalania nośności granicznej, które znajdują odzwierciedlenie w sposobach wymiarowania konstrukcji zespolonych (rys. 2.1 i 2.2), tj. na podstawie:

• nośności sprężystej,
• nośności pozasprężystej (sprężysto-plastycznej, plastycznej).
W pierwszym przypadku nośność graniczna jest osiągnięta, jeżeli choć w jednym włóknie, w dowolnej fazie montażu lub eksploatacji wystąpią naprężenia uznane za graniczne lub w jakimś fragmencie konstrukcji nastąpi utrata stateczności sprężystej. W drugim przypadku nośność graniczna jest rozumiana, jako maksymalna wartość obciążenia, jaką może przenieść belka. Może być ona osiągnięta przy pełnym uplastycznieniu zbrojenia i betonu belki lub przy uplastycznieniu tylko pewnego jego fragmentu.

W celu ułatwienia analizy konstrukcji w zakresie pozasprężystym wprowadzono cztery klasy przekrojów belek [PN-EN 1994-2]:

- klasa 1 – belki, które mogą tworzyć przeguby plastyczne ze zdolnością do pełnego obrotu wymaganą w analizie plastycznej,
- klasa 2 – belki, które mogą osiągnąć nośność plastyczną na zginanie przy ograniczonej zdolności do obrotu,
- klasa 3 – belki, w których naprężenia w skrajnych włóknach ścisłych elementu stalowego mogą osiągnąć granice plastyczności, jednak wyboczenie miejscowe
uniemożliwia osiągnięcie nośności plastycznej na zginanie,

- klasa 4 – belki, które wymagają uwzględnienia wpływu miejscowej utraty stateczności przy określaniu nośności.

Belki do poszczególnych klas zalicza się na podstawie smukłości ściskanego elementu przekroju. Z punktu widzenia tego kryterium wyróżnia się dwa typy przekrojów: krępe i cienkościenne. Elementy konstrukcyjne, w których utrata stateczności przez części składowe profilu zmniejsza jego nośność sprężystą, uznaje się za cienkościenne. Natomiast elementy krępe to takie, w których lokalna utrata stateczności nie ma wpływu na wyczerpanie nośności.

Podstawowym kryterium klasyfikacji jest smukłość ściskanych elementów przekroju stalowego i część betonowa, w tym również występujące w niej zbrojenie nie ma żadnego wpływu na tę klasyfikację. Nie uwzględnia się również usztywniającego wpływu płyty betonowej na stateczność ściskanego pasa zespołonego oraz na wzrost stopnia utwardzenia środnika w pasie zespołonym.

Kryteria działania obciążenia na belkę ma istotne znaczenie w analizie nośności. Z reguły stalowo – betonowe przekroje belki zespołonej są obciążone w płaszczyźnie środnika dźwigara stalowego. Kierunek działania obciążenia belki zespołonej może być:
• tzw. dodatni – ściskana jest wówczas część betonowa (płyta),
• tzw. ujemny – część betonowa jest rozciągana.

W pierwszym wypadku o nośności decyduje zarówno część stalowa (dźwigar stalowy i zbrojenie płyty), jak i betonowa. W drugim natomiast nośność dźwigara stalowego i występujące w płycie betonowej zbrojenie.

W ogólności nośność N belki zespolonej można opisać zależnością:

\[
N = F(S, B, \alpha),
\]

gdzie:

- S – nośność przekroju stalowego,
- B – nośność przekroju betonowego,
- α – wielkość wyrażająca współdziałanie przekroju stalowego i betonowego, np. współodkształcalność.

Równie ważny jak zagadnienie szacowania nośności jest szacowanie sztywności rozumianej, jako opór, jaki stawia ona momentowi zginającemu. Znajomość sztywności, jako funkcji wytężenia jest konieczna do oszacowania ugięć konstrukcji, a także obliczenia rozkładu sił wewnętrznych w konstrukcjach statycznie niewyznaczalnych i redystrybucji sił wewnętrznych będących skutkiem zmian sztywności przy zmienianym się obciążeniu.

Na zmianę sztywności belki zespolonej największy wpływ mają przede wszystkim:
1) nieliniowy związek naprężenia – odkształcenia betonu,
2) podatność zespolenia,
3) zarysowanie obszarów betonu, który jest rozciągany.

Sztywność belki zespolonej jest funkcją sztywności poszczególnych składowych i można ją opisać ogólną relacją:

\[B = F(B_a, B_c, \beta), \] \hspace{1cm} (2.2)

gdzie:
\[B_a \] – sztywność części stalowej przekroju belki zespolonej,
\[B_c \] – sztywność części betonowej przekroju belki zespolonej,
\[\beta \] – parametr opisujący stopień współpracy części stalowej i betonowej, którego miarą może być np. odkształcalność.

W przypadku braku współpracy (współodkształcalności) sztywność, można wyznaczyć, jako sumę:

\[B = B_a + B_c. \] \hspace{1cm} (2.3)

W innych przypadkach parametr \(\beta \) jest wyrażeniem, którego argumentami są: geometria części stalowej i betonowej, proporcja części stalowej i betonowej, stosunek modułu sprężystości stali i betonu oraz podatność zespolenia.

Rys. 2.4. Rzeczywisty rozkład sztywności, jako funkcja wytężenia przekroju

Najmniej problematyczne jest szacowanie sztywności belki zespolonej, w której część betonowa jest ściskana. O wiele trudniejsze jest z kolei oszacowanie sztywności, gdy część betonowa jest rozciągana. Dodatkowo w takiej analizie pojawia się problem szacowania długości odcinków, na których dochodzi do zarysowania. W praktyce, w odniesieniu do belki z niezarysowaną płytą przyjmuje się sztywność zastępczego przekroju stalowego, w którym przekrój betonowy został zastąpiony ekwiwalentnym przekrojem stalowym:

\[B_1 = E_s l_1. \] \hspace{1cm} (2.4)
Natomiast w przypadku przekroju zarysowanego, sztywność przyjmuje się równą sztywności równoważnego przekroju stalowego:

\[B_2 = E_s I_2. \]

(2.5)

W takim podejściu podstawowa rozbieżność pojawia się w związku z nieuwzględnieniem wpływu rozciągającego betonu współpracującego ze zbrojeniem. Uproszczenie to może prowadzić do błędnego oszacowania sztywności, a w konsekwencji do mało precyzyjnego szacowania rozkładu sił wewnętrznych i ugięć konstrukcji. Podobna sytuacja występuje przy obliczaniu sztywności zarysowanych przekrojów żelbetowych. Jednak przenoszenie zasad stosowanych w analizie zginanych konstrukcji żelbetowych do analizy stalowo–betonowych konstrukcji zespolonych nie jest możliwe. Wynika to przede wszystkim z innego wykresu naprężeń w belce wokół rysy w jednym i drugim przypadku. W przekrojach zespolonych rozkład ten jest bardziej zbliżony do rozkładu naprężeń w rozciągającym osiowo pręcie żelbetowym niż do rozkładu naprężeń, jaki występuje w zginanym elemencie żelbetowym.

Podobnie jak we wspomnianych już konstrukcjach żelbetowych, tak i w konstrukcjach zespolonych rozkład sztywności na długości belki jest zmienny, przy czym zmiany te mają charakter lokalny. Dzieje się tak na skutek występowania na długości belki zarówno obszarów zarysowanych, jak i niezarysowanych, ograniczonej współpracy betonu w przenoszeniu obciążeń na odcinkach pomiędzy rysami, a także istnienia stref z częściowo zerwaną przyczepnością pomiędzy zbrojeniem a betonem. W konstrukcjach zespolonych zagadnienie sztywności, dodatkowo się komplikuje ze względu na zespolenie części składowych, które przeważnie jest zespołeniem dyskretnym, przez co swoboda deformacji przekroju pomiędzy kolejnymi rysami może być różna. Oprócz tego mogą występować takie odcinki belki, na których pomiędzy kolejnymi łącznikami występują rysy, a także takie, na których tych rys nie ma. Podatność zespołozenia również ma wpływ na formowanie i rozwój rys. Stąd też uwzględnienie w konstrukcjach zespolonych współpracy zbrojenia z otaczającym je betonem przy szacowaniu sztywności nie jest zadaniem łatwym.

W najprostszym rozwiązaniu (np. wprowadzonym do norm wymiarowania), na umownych odcinkach w strefie momentów rozciągających część betonową, w obliczaniu sztywności pomija się całkowicie beton, a długość tych odcinków jest ustalana arbitralnie (15% długości przęsła – rys. 2.5) i nie ma nic wspólnego z wartością naprężeń rozciągających na krawędzi przekroju betonowego.
Innym podejściem proponowanym w konstrukcjach żelbetowych [Ryżyński i Apanas 1980] jest koncepcja skokowych zmian sztywności (rys. 2.6). Założono tu, że w miejscu rys sztywność przekroju odpowiada sztywności przekroju stalowego (kształtownika i zbrojenia), a w przekroju poza rysą, sztywności przekroju zespolonego. Głównym zadaniem w takim podejściu staje się określenie długości odcinka o zmniejszonej sztywności oraz ustalenie średniego rozstawu rys. Ustalając długość odcinków o zmniejszonej sztywności należy wziąć pod uwagę współpracę betonu ze zbrojeniem oraz dyskretne zespolenie belki stalowej z płytą.

Rys. 2.6. Koncepcja skokowych zmian sztywności w miejscach rys

Opisywane zadanie można również rozwiązać poprzez uśrednienie sztywności przekroju na odcinku, na którym naprężenia rozcigające przekraczają wytrzymałość betonu na rozciąganie (rys. 2.7). Sztywność na odcinkach zarysowanych może być wówczas wyrażana jako suma z odpowiednimi wagami sztywności przekroju w miejscu rysy i niezarysowanego:

\[
B_{sr} = \alpha \cdot B_1 + \beta \cdot B_{II},
\]

(2.6)

gdzie:

\(B_1\) – sztywność belki niezarysowanej,
\(B_{II}\) – sztywność belki zarysowanej,
\(\alpha, \beta\) – współczynniki \((\alpha, \beta < 1,0)\), które muszą być tak dobrane, aby był spełniony warunek: \(B_1 > B_{sr} > B_{II}\).
Uzależniając podane wagi od wartości momentu zginającego, który działa na belkę, możliwa jest analiza zmian sztywności przy dowolnym poziomie wytężenia. Aczkolwiek kluczowym zadaniem przy takim podejściu jest oszacowanie współczynników α i β.

2.3. PRAKTYKA PROJEKTOWA

Pomimo tego, że od kilkudziesięciu już lat w Polsce są budowane obiekty mostowe o konstrukcji zespolonej to dotychczas nie było krajowej normy regulującej procedurę ich projektowania. Stąd też części betonowe (zelbetowe lub sprężone) projektowano według normy do projektowania mostów betonowych [PN-91/S-10042], natomiast części stalowe według normy do projektowania mostów stalowych [PN-82/S-10052].

Sytuacja ta uległa zmianie dosyć niedawno, kiedy to wszystkie normy europejskie (EN), opracowane przez CEN (Europejski Komitet Normalizacyjny) uzyskały, bez wprowadzania jakichkolwiek zmian, status norm krajowych (PN-EN). W związku z tym członkowie CEN, a wśród nich Polski Komitet Normalizacyjny, zostali zobowiązani do wycofania norm krajowych, sprzecznych z normami EN do końca marca 2010 r.

Nowe, europejskie normy projektowania mostów zespolonych bardzo istotnie różnią się od dotychczas obowiązującej w Polsce praktyki projektowania. W tej chwili jedna z nowych, podstawowych zasad zakłada, że przewidywany czas eksploatacji mostu stałego wynosi 100 lat, ale z uwzględnieniem obowiązku odpowiedniego utrzymywania i konserwacji obiektu. Oczywiście nie dla wszystkich elementów konstrukcji mostu, nie mówiąc już o elementach wyposażenia, możliwe jest zapewnienie stuletniej żywotności. W takim przypadku projekt powinien przewidzieć ich wymianę bez większych zakłóceń w normalnym użytkowaniu.
obiektu. Ponadto elementy konstrukcyjne, do których mocowane jest wyposażenie, muszą być tak projektowane, aby uszkodzenie wyposażenia nie powodowało zniszczenia nośnej konstrukcji mostu, do której jest ono przymocowane.

2.4. ZALECENIA NORMOWE

2.4.1. Uwagi ogólne

Jak już wspomniało wcześniej projektanci mostowi przy obliczaniu mostów zespolonych typu stal – beton rzadko uwzględniali sztywność zarysowanej płyty pomostu pod wpływem naprężeń rozciągających. W ten sposób znacznie zmniejszona była teoretyczna trwałość i obliczeniowa sztywność konstrukcji mostu. Takie podejście, podyktowane było w dużej mierze brakiem normy krajowej. To, co wynikało z tradycji i przenoszenia zasad z norm stalowej i betonowej zostało obecnie zastąpione przez przepisy techniczne zawarte w Eurokodzie 4.

2.4.2. Ujęcie stanu zarysowania płyty pomostu według PN-EN 1994-2

Tam, gdzie należy ograniczać szerokość rys w płycie betonowej mostu zespolonego na powierzchni poddanej odkształceniom rozciągającym, minimalne zbrojenie efektywnej powierzchni półki betonowej w strefie rozciąganej A_{ct} powinno spełniać warunek:

$$\rho_s \geq \frac{0.9 \cdot k_c \cdot k \cdot f_{cm}}{\sigma_s},$$

gdzie:

- ρ_s – stosunek powierzchni stali zbrojeniowej A_s do efektywnej powierzchni betonu strefy rozciąganej A_{ct}:

$$\rho_s = \frac{A_s}{A_{ct}},$$

- k_c – współczynnik uwzględniający charakter rozkładu naprężeń w przekroju w chwili bezpośrednio poprzedzającej zarysowanie określony wzorem:

$$k_c = \frac{1}{1 + \frac{h_c}{2 \cdot z_o} + 0.3} \leq 1,0,$$

- k – współczynnik uwzględniający efekt równomiennych samorównoważających się naprężeń, który można przyjmować jako równy 0,8,

- σ_s – naprężenie w przekroju stali minimalnego zbrojenia, które jest funkcją maksymalnej średnicy pręta ϕ_s, podanej w tablicy 2.1,

- h_c – grubość płyty betonowej z wyłączeniem wszelkich pogrubień lub żeber,
z₀ – pionowa odległość między środkiem ciężkości niezarysowanej i niezbrojonej płyty betonowej a środkiem ciężkości niezarysowanego i niezbrojonego przekroju zespolonego, obliczona z wykorzystaniem stosunku modułów w przypadku efektów krótkotrwałych E_a/E_m.

<table>
<thead>
<tr>
<th>Tablica 2.1. Zależność naprężeń w stali zbrojeniowej od średnicy pręta [PN-EN 1994-2]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naprzeżenia w stali [MPa]</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>160</td>
</tr>
<tr>
<td>200</td>
</tr>
<tr>
<td>240</td>
</tr>
<tr>
<td>280</td>
</tr>
<tr>
<td>320</td>
</tr>
<tr>
<td>360</td>
</tr>
<tr>
<td>400</td>
</tr>
<tr>
<td>450</td>
</tr>
</tbody>
</table>

Podane wartości naprężeń można zwiększyć mnożąc je przez współczynnik:

$$\eta = \sqrt{\frac{f^*_{\text{cim}}}{f^*_{\text{cim}}}},$$

(2.10)

gdzie:

- f^*_{cim} – porównawcza wytrzymałość betonu na rozciąganie równa 250 MPa,
- f^*_{cim} – aktualna wytrzymałość betonu na rozciąganie.

W żadnym przypadku naprężenie σ nie powinno przekraczać wartości kf_k, gdzie f_k jest wytrzymałością charakterystyczną stali zbrojeniowej.

W mostach sprężonych ciężkimi, minimalny przekrój zbrojenia podłużnego powinien być równy:

$$\rho_s = \frac{0,9 \cdot k_c \cdot k \cdot f^*_{\text{cim}} - \xi_1 \cdot \rho_p}{\sigma_s},$$

(2.11)

gdzie:

- ρ_s – zgodnie z (2.8),
- ξ_1 – skorygowany współczynnik przyczepności, biorąc pod uwagę różne średnice stali zbrojeniowej i sprężającej, równy 1,0 gdy stosuje się tylko stal sprężającą oraz:
\[\xi = \sqrt{\frac{\xi_s \cdot \phi_s}{\phi_p}} \]
(2.12)

gdy stosuje się stal zbrojeniową i sprężającą,

\(\xi \) – stosunek średniej siły przyczepności stali sprężającej i stali zbrojeniowej użebrowanej,

\(\phi_s \) – największa średnica stali zbrojeniowej,

\(\phi_p \) – zastępcza średnica stali sprężającej:

\[\phi_p = 1,6 \cdot \sqrt{A_p} \]
dla cięgien z kilku splotów lub drutów,

\[\phi_p = 1,75 \cdot \phi_{wire} \]
dla pojedynczych splotów z 7 drutów,

\[\phi_p = 1,20 \cdot \phi_{wire} \]
dla pojedynczych splotów z 3 drutów.

Naprężenia rozciągające w prętach zbrojeniowych powinny być określone przez analizę sprężystą przekroju poprzecznego, uwzględniając efekt współpracy betonu z prętami między rysami. Naprężenia rozciągające \(\sigma_s \) (w mostach bez sprężenia) można obliczać z następującej zależności:

\[\sigma_s = \sigma_{s,0} + 0,4 \cdot \frac{f_{ctm}}{\alpha_s \cdot \rho_s} \]
(2.13)

gdzie:

\(\sigma_{s,0} \) – naprężenie w zbrojeniu, obliczane z pominięciem betonu strefy rozciąganej,

\[\alpha_s = \frac{A \cdot I}{A_s \cdot I_s} \]
(2.14)

\(A, I \) – odpowiednio pole powierzchni i moment bezwładności dźwigara stalowego,

\(A_s, I_s \) – odpowiednio pole powierzchni i moment bezwładności przekroju belki zespolonej z pominięciem betonu strefy rozciąganej.

Gdy płyta pomostu jest dodatkowo sprężona cięgnami, naprężenia wywołane momentami zewnętrznymi można obliczać ze wzorów:

1) w przypadku naprężeń w zbrojeniu podłużnym:

\[\sigma_s = \sigma_s^{II} + 0,4 \cdot f_{ctm} \cdot \left(\frac{1}{\rho_{p,efT}} - \frac{1}{\rho_{tot,efT}} \right) \]
(2.15)
2) w przypadku naprężeń w cięgnach sprężających

\[
\sigma_p = \sigma_{st}^{II} + 0,4 \cdot f_{cm} \cdot \left(\frac{1}{\rho_{tot,eff}} - \frac{1}{\rho_{p,eff}} \right),
\]

(2.16)

\[
\sigma_{st}^{II} = \sigma_{st,0} + \frac{0,4 \cdot f_{cm}}{\rho_{p,eff}},
\]

(2.17)

\[
\rho_{tot,eff} = \frac{A_s + A_p}{A_{ct}},
\]

(2.18)

\[
\rho_{p,eff} = \frac{A_s + 2t^2 + A_p}{A_{ct}}.
\]

(2.19)

Szerokość rys można uznać za wystarczająco ograniczoną przy danym naprężeniu \(\sigma_s\), jeżeli średnica prętów nie przekracza wartości podanych w tablicy 2.1, a rozstaw prętów granic podanych w tablicy 2.2.

Tablica 2.2. Maksymalny rozstaw prętów żebrowanych

<table>
<thead>
<tr>
<th>Naprężenia w stali [MPa]</th>
<th>Maksymalna średnica pręta (\phi_s) [mm] do obliczenia szerokości rys (w_k)</th>
<th>(w_k) - 0,4 mm</th>
<th>(w_k) - 0,3 mm</th>
<th>(w_k) - 0,2 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>160</td>
<td>40</td>
<td>32</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>32</td>
<td>25</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>240</td>
<td>20</td>
<td>16</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>280</td>
<td>16</td>
<td>12</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>320</td>
<td>12</td>
<td>10</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>360</td>
<td>10</td>
<td>8</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Przedstawiona metoda pośrednia (uproszczona) w wielu przypadkach jest mało dokładna i przez to prowadzi do błędnych wyników, które znacznie odbiegają od rozwiązań uzyskiwanych według metody bezpośredniej (ogólnej) [Knauff M. i Golubińska 2012], opisanej dokładnie w analizie obliczeniowej w rozdziale 5.

2.5. PRZEGLĄD WYBRANYCH PRAC ANALITYCZNYCH I BADAWCZYCH

Praktycznie od początku stosowania betonu w budownictwie pojawiały się prace dotyczące powstawania rys w żelbecie. Pierwsze badania przeprowadzone były na elementach

Wspomniany wyżej Saliger zakłada rozkład naprężeń w betonie i stali w strefie rozciąganej betonu jako funkcję sinusoidalną. Ponadto przyjął, że w miejscu rysy naprężenie w betonie jest równe zero, a między rysami zmienne ale mniejsze od wytrzymałości betonu na rozciąganie. Z kolei Muraszow za podstawę do obliczeń stanu zarysowania przyjął założenie, że przy większych obciążeniach elementy zginane zachowują jak zarysowane, tj. znajdują się w fazie II pracy belki żelbetowej, żelbet uważa się za materiał sprężysto – plastyczny, a odkształcenia plastyczne rosną wraz z odkształceniami sprężystymi.

Z kolei w [Jarek 2004] autor zaproponował wzory na rozstaw i szerokość rys, w których uwzględnił poślizg zbrojenia w płycie betonowej przez wykorzystanie stopnia zespolenia belki stalowej z płytą, niezależnie od zastosowanych łączników względem płyty. Sposób obliczania zarysowania uzależnił od położenia osi obojgólnej przekroju zespolonego, a także od czynników wywołujących zarysowanie płyty.

Dokonano również porównania niektórych metod obliczeniowych i ich weryfikację doświadczalną przekroju żelbetowego celem sprawdzenia, czy któryś ze znanych sposobów obliczania rys wywodzący się z żelbetu można odnieść bezpośrednio do płyt żelbetowych w belkach zespolonych, oraz które z rozwiązań teoretycznych dają najbliższe rzeczywistym wyniki. Zestawienie takie można znaleźć w [Furtak i Musialik 2001].

Wśród prac dotyczących zarysowania belek zespolonych znajdują się również takie, które opisują zachowanie się konstrukcji, uwzględniając zarysowanie rozciąganej płyty betonowej.

Istotnym problemem w odniesieniu do zarysowania płyty, również słabo rozpoznanym, jest podatność zespolenia. Przy czym przemieszczenie płyty żelbetowej względem belki stalowej w wyniku odkształcenia łączników i zerwania przyczepności płyty do belki stalowej występuje przede wszystkim w elementach, w których zastosowano łączniki wiotkie, a w szczególności w przypadku powszechnie stosowanych łączników sworzniowych. Jarek [2008] na podstawie wyników badań oraz analiz belek zespolonych o zespoleniu niepełnym stwierdził, że stan zarysowania elementów zespolonych zależy w znacznej mierze od stopnia zespolenia. Im wyższy stopień zespolenia tym rozstaw i szerokość rys były mniejsze. Najmniejsze rozstawy rys i maksymalne szerokości występowaly w belkach z zespoleniem niepodatnym.

Jednym z ważniejszych zagadnień w zakresie konstrukcji zespołowych jest również ocena wpływu zarysowania płyty żelbetowej na ugięcie belek zespołowych. Niestety literatura dotycząca tej problematyki nie jest zbyt obszerna, co akurat wiąże się z mniejszym
zainteresowaniem jakie do niedawna przywiązywano do stanów granicznych użytkowalności konstrukcji zespolonych w porównaniu ze stanem granicznym nośności.

Wpływ zarysowania płyty na ugięcie belek zespolonych jest ważny przynajmniej z dwóch powodów. Pierwszy z nich, który de facto można traktować jako formalny, dotyczy rzecz jasna sprawdzenia ugięcia i porównania go z normowym. Drugi powód jest nie mniej ważny i dotyczy określenia podniesienia wykonawczego, tj. tzw. odwrotnej strzałki ugięcia.

Należy w tym miejscu podkreślić, iż wpływ zarysowania płyty żelbetowej w strefie momentów ujemnych na wartość ugięć belki zespolonej ciągłej związany jest ze zmianą sztywności dźwigara w obszarze rys. Przyjęcie stałej sztywności belki zespolonej jest uproszczeniem, które może prowadzić w niektórych przypadkach do znacznych niedokładności w obliczaniu ugięć. Jest to problem podobny do występującego przy obliczaniu belek żelbetowych [Kuczyński 1971; Knauff A. i Knauff M. 1977].

W pracy [Kindmann 1990] podano zależność między krzywizną a momentem zginającym oraz siłą normalną w płycie betonowej. Wykazano, że nieciągłości związane są z zarysowaniem przekroju i zmniejszeniem się współpracy betonu ze stalą zbrojeniową. W konsekwencji efektem są lokalne, skokowe spadki sztywności, które nie powodują jednak skokowych zmian krzywizny belki. Wynika to ze współdziałania betonu rozciągającego ze stalą zbrojeniową na odcinkach bezpośrednio przylegających do rysy. Sztywność belki zespolonej w strefie momentów zginających rozciągających płyty jest więc zmieniona na odcinku pomiędzy rysami.

Znajomość sztywności jako funkcji wytężenia jest wymagana nie tylko do oszacowania przemieszczeń (ugięć) konstrukcji ale również obliczenia rozkładu sił wewnętrznych w konstrukcjach statycznie niewyznaczalnych i redystrybucji sił wewnętrznych, będących skutkiem zmian sztywności przy zmieniającym się obciążeniu.

Analiza skutków zarysowania płyty w belkach zespolonych ze szczególnym uwzględnieniem redystrybucji sił wewnętrznych w belkach ciągłych została omówiona w pracach [Madaj 1999; Karlikowski, Madaj i Wołowicki 2002]. Autorzy stwierdzają, że sztywność przekroju do chwili zarysowania płyty jest praktycznie stała. Dopiero zwiększenie obciążenia do wartości powodującej przekroczenie odkształceń, odpowiadających wytrzymałości betonu na rozciąganie wprowadza zmiany w pracy belki. W trakcie badań doświadczalnych wyraźny spadek sztywności zaobserwowano w chwili powstania pierwszej rysy, co objawiało się gwaltownym wzrostem krzywizny. Efektem zaburzenia krzywizn lokalnych były znacznie szybsze przyrosty ugięć niż przed zarysowaniem. Po zarysowaniu płyty, zmierzona wartość krzywizny mieściła się pomiędzy wartościami obliczonymi przy założeniu, że sztywność belki odpowiada sztywności części stalowej, a wartościami obliczonymi z uwzględnieniem współpracy rozciąganej betonu ze zbrojeniem, i była około
15% większa od sztywności przekroju stalowego. Stabilizacja rozkładu sztywności następowała, gdy zmniejszała się liczba nowo powstałych rys.

Zarysowanie płyty powoduje dość duże zmniejszenie momentów podporowych (około kilkanaście procent) oraz względnie niewielkie zwiększenie momentów przesłowych (około kilka procent). Na podstawie opisanych wcześniej badań w pracy [Karlikowski, Madaj i Wołowicki 2002] autorzy stwierdzili również, że w zakresie obciążeń eksploatacyjnych następuje stabilizacja rozkładu sztywności i nie obserwuje się redystrybucji momentów zginających w belce.

2.6. OCENA STANU WIEDZY

Przeprowadzone rozpoznanie literaturowe wskazuje, iż zadanie zarysowania płyt żelbetowych w belkach zespolonych typu stal – beton nie jest nowy. Niemniej jednak zagadnienie to było traktowane do tej pory nie dość dokładnie, a główny nacisk kładziono na nośność elementów [Furtak 1999; Jarek 2004]. Znalazło to swoje odzwierciedlenie również w obecnie obowiązującej normie do projektowania konstrukcji zespolonych [PN-EN 1994-2]. Aczkolwiek propozycje przedstawione w Eurokodzie 4 cz. 2 wprowadziły nowe tendencje w ujęciu tego zagadnienia, które wymagają dalszych uściśleń i weryfikacji doświadczalnych, zwłaszcza w zakresie belek ciągłych.

Dodatkowo w procesie projektowania konstrukcji mostowych obecnie coraz większy nacisk kładzie się na konieczność uwzględnienia czynników ekonomicznych oraz stosowanie coraz dokładniejszych metod obliczeniowych, mających na celu zbliżenie rzeczywistych wartości naprężeń występujących w konstrukcji do wartości zakładanych w obliczeniach. Zwiększający się udział obciążeń użytkowych w stosunku do obciążeń całkowitych oraz stosowanie nowych metod montażu konstrukcji powodują, że prawidłowe uwzględnienie sztywności zarysowanego betonu w płycie stało się niezbędne przy analizie belek zespolonych. Podjęty temat wydaje się więc być aktualny i godny uwagi.
3. BADANIA DOŚWIADCZALNE

3.1. WPROWADZENIE

Głównym celem doświadczalnej części pracy jest pogłębienie wiedzy na temat zjawisk zachodzących w konsekwencji rozciągania płyty podczas zginania belki zespołnej, a także zebranie danych do ich modelowania numerycznego. Badania doświadczalne przeprowadzono na belkach ciągłych, dwuprzęsłowych pod obciążeniem statycznym o powtarzalnych cyklach (obciążenie – odciążenie) aż do osiągnięcia maksymalnej założonej wartości.

W celu pełniejszej realizacji sformułowanych zadań wykonano badania dodatkowe, dotyczące własności materiałowych betonu, z którego została wykonana płyta elementu badawczego. Wykonano również pomiary nie będące bezpośrednio związane z zagadnieniem sztywności zarysowanego betonu jednak pozwalające na weryfikację wyników obserwacji i wyznaczenia, bądź też sprawdzenia dodatkowych parametrów. Stąd też dokonano pomiaru poślizgu płyty żelbetowej względem dźwigara stalowego, pozwalający zweryfikować stopień zespolenia belki, a także pomiaru odkształceń zarówno samego dźwigara, jak i płyty, co z kolei pozwoliło określić rzeczywiste położenie osi obojquetnej, sztywność chwilową przekroju a także zweryfikować naprężenia w badanym elemencie. Oprócz tego, dokonano pomiarów kąta obrotu belki na każdym jej końcu, pomiaru ugięć w miejscu przyłożenia obciążenia zewnętrznego oraz pomiaru przemieszczeń pionowych nad podporami, dzięki czemu można było wyznaczyć końcowy obraz odkształconych elementów badawczych.

W dalszej części rozdziału przedstawiono pełny zakres przeprowadzonych badań wraz ze szczegółowym opisem elementów badawczych.

1 Badania doświadczalne były współfinansowane w ramach środków statutowych Ministerstwa Nauki i Szkolnictwa Wyższego nr S-50/B/2012.
3.2. PROGRAM BADAŃ

Zakres badań doświadczalnych wynika z przyjętej metodyki udowodnienia tezy sformułowanej w niniejszej pracy. W związku z tym przewidziano dwa etapy badań:

1) badania wstępne,
2) badania zasadnicze.

Celem badań wstępnych było określenie cech wytrzymałościowych betonu, z którego została wykonana płyta elementu badawczego. Wykonano badania na podstawie, których określono:

- wytrzymałość betonu na ściskanie,
- wytrzymałość betonu na rozciąganie,
- moduł sprężystości betonu.

Z kolei dane materiałowe odnoszące się do zastosowanej stali uzyskano z atestów dostarczonych przez producentów.

Celem zasadniczej części doświadczalnej było określenie zachowania się pod obciążeniem statycznym belek zespolonych z rozciąganą płytą współpracującą, a także uzyskanie danych do komputerowego modelowania stalowo – betonowych konstrukcji zespolonych o schematach statycznych wywołujących ujemne momenty zginające. Stąd też badania właściwe obejmowały odpowiednio pomiary:

- propagacji rys w czasie,
- odkształcenia dźwigara stalowego,
- odkształcenia płyty betonowej,
- odkształcenia stali zbrojeniowej w strefie tzw. momentów dodatnich oraz w strefie tzw. momentów ujemnych,
- kąta obrotu na końcach belek,
- ugięć belek w miejscu przyłożenia sił oraz przemieszeń pionowych w osi podłużnej (nad każdą podporą),
- poślizgu płyty żelbetowej względem dźwigara stalowego.

Wszystkie prace związane z wykonaniem elementów badawczych, ich późniejszym przygotowaniem do badań i przeprowadzenie samych badań laboratoryjnych przewidzianych w założonym programie trwały około 2 miesiące.
3.3. ELEMENTY BADAWCZE

3.3.1. Podstawowe dane belek

Badania laboratoryjne przeprowadzono na elementach badawczych, które wykonano w postaci belek ciągłych, dwuprzęsłowych, o przekroju poprzecznym przedstawionym na rysunku 3.1. Długość całkowita każdej belki wynosiła 7,00 m, w tym rozpiętości podporowe 2x3,00 m.

![Rys. 3.1. Przekrój poprzeczny badanych belek z rozmieszczeniem zbrojenia głównego](image)

Płytę żelbetową wykonano z mieszanki betonowej zaprojektowanej na klasę C 25/30 i zazbrojono pętlami gładkimi ze stali S235JR+AR (zbrojenie główne) i G3S11 (strzemiona). Jako zbrojenie podłużne zastosowano pętli φ10 mm ułożone w dwóch rzędach: górą i dołem, na całej długości po 6 prętów w rozstawie co 8 cm. Natomiast w kierunku poprzecznym ułożono strzemiona φ4,5 mm w rozstawie co 20 cm. Przykład zbrojenia elementów badawczych pokazano na rysunku 3.1 oraz na fotografii B.2 w załączniku B. Ze względu na ograniczenia wynikające z budowy stendu badawczego (fot. A.1 w załączniku A), szerokość płyty nie mogła przekraczać 50 cm.

![Rys. 3.2. Rozmieszczenie łączników kołkowych](image)
Jako dźwigar stalowy, zastosowano profil walcowany IPN 360 ze stali S355, który na całej długości połączono z płytą żelbetową za pomocą dwóch rzędów łączników kolkowych. Łączniki o średnicy 16 mm i wysokości 75 mm przyspawano do pasa górnego belki w rozstawie co 20 cm. Taki sposób połączenia miał zapewnić niepodatność zespolenia w całym zakresie obciążenia. Dokładne rozmieszczenie łączników pokazano na rysunku 3.2 oraz na fotografii B.1 w załączniku B.

3.3.2. Sposób wykonania belek

Wszystkie elementy stalowe wraz z przyspawaniem łączników kolkowych do pasa górnego belki wykonano w wytwórni konstrukcji stalowych Gotowski Budownictwo Komunikacyjne i Przemysłowe Sp. z o.o., a następnie dostarczono do zakładu prefabrykacji w celu połączenia w całość z płytą.

Szlunek pod płytę żelbetową wykonano na rusztowaniu ciągłym (fot. B.2 w załączniku B). Podczas betonowania, celem zapewnienia właściwej otuliny wynoszącej minimum 2 cm oraz właściwego ułożenia zbrojenia w płycie, zastosowano betonowe podkładki dystansowe z betonu tej samej klasy co płyta. Mieszanka betonowa o wymaganej klasie betonu wykonywana była w wytwórni betonów firmy Sibet S.A. w Kielcach według ich receptury (C3 w załączniku C). Przed betonowaniem płyty na dwóch prętach zbrojenia podłużnego umieszczono tensometry w przekrojach nad podporą pośrednią i w przęsle w miejscu przyłożenia siły (fot. B.3 w załączniku B).

Wlewanie samej mieszanki do szalunku odbywało się z niewielkiej wysokości, tak aby uniknąć segregacji kruszywa (fot. B.5–B.6 w załączniku B). Beton pielęgnowano przez 14 dni zapewniając mu właściwą i stałą temperaturę oraz wilgotność.

Taki sposób wykonania elementów badawczych pozwolił na uniknięcie wprowadzeniya dodatkowego, początkowego stanu naprężeń wywołanego sposobem montażu, a właściwa pielęgnacja pozwoliła na ograniczenie wpływu skurczu betonu na naprężenia.

Po zdemontowaniu szalunku, w połowie długości belki (lokalizacja podpory pośredniej) wykonano bruzdy szerokości 10 cm na obu krawędziach płyty i głębokości 0,5 cm (fot. B.7 w załączniku B) w celu wymuszenia kontrolowanej rysy.
3.4. PRZYGOTOWANIE I PRZEBIEG BADAŃ

3.4.1. Stanowisko badawcze

Badania belek przeprowadzono we współpracy z Politechniką Świętokrzyską i Ośrodkiem Badań Mostów, filia „Kielce” należącym do Instytutu Badawczego Dróg i Mostów. Stanowisko badawcze składało się z maszyny wytrzymałościowej ZD-100 produkcji VEB w Werkstoffprüfmaschinen Leipzig ze stendem, wyposażonej w jeden siłownik hydrauliczny o maksymalnej sile wymuszającej 700 kN oraz dwóch siłowników hydraulicznych o maksymalnej sile wymuszającej po 350 kN każdy, z automatyczną kontrolą wywieranej siły.

Wygląd stanowiska badawczego wraz ze stanowiskiem pomiarowym pokazano na fotografiach A.1+A.2 w załączniku A oraz na rysunku 3.3.

Elementy badawcze były umieszczone między słupkami stalowej ramy, które w przypadku zsunięcia się belki z któregoś łożyska zabezpieczaly ją przed przemieszczeniem się z pozycji centralnej (fot. B.8 w załączniku B).
3.4.2. Realizacja obciążenia belek

Miejsce przyłożenia obciążeń zewnętrznych dobrano w taki sposób, aby wartości wywołanych momentów zginających, przesłowych i podporowego były zbliżone do siebie oraz aby w elemencie badawczym występowały strefy momentów ujemnych powodujących rozciąganie górnych włókien płyty żelbetowej. Stąd też obciążenie w postaci dwóch sił skupionych zlokalizowano w odległości 175 cm z każdej strony podpory środkowej (rys. 3.4 i fot. B.9 w załączniku B).

![Rys. 3.4. Schemat obciążenia badanych belek](image)

Siły były przyłożone do górnej powierzchni płyty betonowej za pośrednictwem konstrukcji (belecza stalowa z podkładką) rozkładającej je na pasmo poprzeczne do osi belki o wymiarach 100 x 460 mm (fot. B.10 w załączniku B). Obciążenie wywołane dwoma siłownikami hydraulicznym przekazywano dodatkowo za pomocą belki trawersowej (fot. B.11 w załączniku B).

Wartości sił obciągających badaną belkę wprowadzano do programu, który sterował automatycznie siłownikami hydraulicznymi (fot. A.2 w załączniku A).

W każdym elemencie badawczym przeprowadzono po cztery cykle obciążenia, rozpoczynając za każdym razem od wartości zerowej siły obciągającej. Belki obciągano stopniowo narastającymi siłami skupionymi. Pierwszy cykl zawsze przeprowadzano w zakresie od 0 kN do pojawienia się pierwszej rysy. W następnych cyklach siłę zwiększano o około 200 kN, aż do osiągnięcia maksymalnego obciążenia założonego. Uzyskanie maksymalnej wartości w każdym cyklu odbywało się poprzez zwiększanie siły stopniowo, wprowadzając pośrednie wartości obciążenia. Prędkość przyrostu obciążenia wynosiła średnio około 10 kN/minutę. Zakres obciążenia odpowiadał obciążeniu eksploatacyjnemu przyjętego układu (zakres pracy sprzężystej).
Wykaz poszczególnych cykli i odpowiadające im wartości obciążenia każdej z badanych belek przedstawiono w tablicach 3.1-3.3.

Tablica 3.1. Wartości obciążenia zewnętrznego w poszczególnych cyklach belki B1

<table>
<thead>
<tr>
<th>Nr cyklu</th>
<th>Wartość obciążenia podczas obciążania [kN]</th>
<th>Wartość obciążenia podczas odciążania [kN]</th>
</tr>
</thead>
<tbody>
<tr>
<td>NC-1</td>
<td>0-70</td>
<td>70-0</td>
</tr>
<tr>
<td>NC-2</td>
<td>0-70-196</td>
<td>196-70-0</td>
</tr>
<tr>
<td>NC-3</td>
<td>0-70-196-393</td>
<td>393-196-70-0</td>
</tr>
<tr>
<td>NC-4</td>
<td>0-70-196-393-493</td>
<td>493-393-196-70-0</td>
</tr>
</tbody>
</table>

Tablica 3.2. Wartości obciążenia zewnętrznego w poszczególnych cyklach belki B2

<table>
<thead>
<tr>
<th>Nr cyklu</th>
<th>Wartość obciążenia podczas obciążania [kN]</th>
<th>Wartość obciążenia podczas odciążania [kN]</th>
</tr>
</thead>
<tbody>
<tr>
<td>NC-1</td>
<td>0-230</td>
<td>230-0</td>
</tr>
<tr>
<td>NC-2</td>
<td>0-230-400</td>
<td>400-230-0</td>
</tr>
<tr>
<td>NC-3</td>
<td>0-230-400-600</td>
<td>600-400-230-0</td>
</tr>
<tr>
<td>NC-4</td>
<td>0-230-400-600-700</td>
<td>700-600-400-230-0</td>
</tr>
</tbody>
</table>

Tablica 3.3. Wartości obciążenia zewnętrznego w poszczególnych cyklach belki B3

<table>
<thead>
<tr>
<th>Nr cyklu</th>
<th>Wartość obciążenia podczas obciążania [kN]</th>
<th>Wartość obciążenia podczas odciążania [kN]</th>
</tr>
</thead>
<tbody>
<tr>
<td>NC-1</td>
<td>0-120</td>
<td>120-0</td>
</tr>
<tr>
<td>NC-2</td>
<td>0-120-200</td>
<td>200-120-0</td>
</tr>
<tr>
<td>NC-3</td>
<td>0-120-200-400</td>
<td>400-200-120-0</td>
</tr>
<tr>
<td>NC-4</td>
<td>0-120-200-400-600</td>
<td>700-600-400-200-120-0</td>
</tr>
</tbody>
</table>

Ze względów technicznych, w trakcie badania belki B1 udało się jedynie wywołać obciążenie zewnętrzne równe 70% wartości maksymalnej siłowników.

Uzyskując wartości maksymalne lub minimalne w poszczególnych cyklach dokonywano około 180 sekundowych przerw przed kolejną zmianą obciążenia. Przerwy te pozwalały na
ustabilizowanie się występujących wielkości naprężeń w badanych belkach, a także dawały możliwość obserwowania na bieżąco zachodzących zmian.

3.4.3. Punkty pomiarowe i mierzone wielkości

Rozmieszczenie punktów pomiarowych przedstawiono na rysunku 3.5 i fotografiach B.12–B.15 w załączniku B. W trakcie wykonywania zasadniczych badań podstawowymi wielkościami podlegającymi pomiarowi była propagacja rys w czasie.

Rys. 3.5. Rozmieszczenie punktów pomiarowych: a) widok z boku, b) przekrój podporowy, c) przekrój przesłowy

Ponadto w czasie badań za pomocą tensometrów elektrooporowych dokonano pomiaru odkształceń stali zbrojeniowej (tensometry foliowe oznaczone „T1”–„T8”) i konstrukcyjnej (tensometry foliowe oznaczone „T9”–„T18”) oraz betonu płyty (tensometry papierowe oznaczone „T19”–„T22”). Odkształcenia mierzone w dwóch przekrojach: nad podporą, w strefie tzw. momentów dodatnich oraz w przęsle, w strefie tzw. momentów ujemnych. Dzięki wykonanym wcześniej bruźdom na obu krawędziach płyty chciano uzyskać rzeczywiste wartości odkształceń w miejscu pojawienia się rysy. W przekroju przesłowym, ze względu na konstrukcję rozkładającą obciążenie na pasmo poprzeczne, na całą szerokość
płyty tensometry naklejono na powierzchniach bocznych. Z kolei w przypadku przekroju podporowego punkty pomiarowe ze względu na występujące lokalnie krzywizny zamontowano na dole środnika, bezpośrednio nad dolną stopką (fot. B.15 w załączniku B).

Równocześnie, wraz z pomiarem odkształceń za pomocą czujników indukcyjnych WA100 i WA50 firmy Hottinger Baldwin Messtechnik GmbH o zakresie pomiarowym 0÷100 mm i 0÷50 mm, dokonywano odczytów przemieszczeń pionowych (nad każdą podporą i w miejscu przyłożenia siły), kątów obrotu na końcach belki oraz poślizgu płyty betonowej względem górnej stopki dźwigara stalowego.

Wszystkie urządzenia pomiarowe podłączono za pomocą kabli Technokabel LIYCY-P 3x2x0,5 do analizatora sygnału typu SPIDER. Wyniki poszczególnych wielkości były rejestrowane komputerowo, w programie Catman 2.2 na każdym poziomie obciążenia (fot. A.2 w załączniku A). Oprócz tego, przy każdej kolejnej zmianie wartości siły obciążenia, gdy ustabilizowały się odczyty przemieszczeń i odkształceń, został wykonany obraz zarysowania. W celu ułatwienia pomiaru rys całą płytnę pomalowano farbą.

Rezultaty badań i ich analizę w kontekście znanych hipotez i przeprowadzonego przeglądu literatury przedstawiono w kolejnym, 4 rozdziale.
4. ANALIZA WYNIKÓW BADAŃ

4.1. BADANIA WSTĘPNE

4.1.1. Uwagi ogólne

Cechy mechaniczne określono i zestawiono na podstawie badań poszczególnych materiałów wchodzących w skład elementu badawczego oraz na podstawie danych otrzymanych od producentów.

Badania własności mechanicznych przeprowadzono w betonie, z którego wykonano pasmo płyty. Natomiast informacje dotyczące cech materiałowych stali, których nie objęły badania otrzymano w postaci atestów dostarczonych przez producentów (C.1-C.2 w załączniku C).

W trakcie badań wstępnych określono podstawowe cechy wytrzymałościowe betonu, a także przeprowadzono badania modułu sprężystości.

4.1.2. Badania betonu

Betonowanie płyty odbywało się w trzech seriach z uwagi na brak dostatecznej przestrzeni do pielęgnowania i przechowywania elementów badawczych. Stąd też w każdej serii wykonano badania pozwalające określić wytrzymałość betonu na ściskanie i rozciąganie. Dodatkowo, w betonie z którego wykonano płytę belki B3 określono współczynnik sprężystości.

Badania wykonano na elementach normowych (fot. B.4 w załączniku B). Ściskanie wyznaczono zgodnie z [PN-EN 12390-3] na próbkach sześciennych o boku 150 mm po 3, 7, 14 i 28 dniach od chwili wykonania, natomiast rozciąganie określono metodą przez rozłupywanie zgodnie z [PN-EN 12390-6] na walcach normowych o średnicy 150 mm i wysokości 300 mm. Do badań pobrano po 12 próbek z każdego zarobu.
Podobnie jak w przypadku wytrzymałości na rozciąganie, wartość modułu sprężystości badanego betonu określono na walcach o średnicy 150 mm i wysokości 300 mm. Otrzymane wyniki badań betonu po 28 dniach przedstawiono w tablicy 4.1.

<table>
<thead>
<tr>
<th>Nr belki</th>
<th>Ilość próbek</th>
<th>Wartości średnie f_{cm} [MPa]</th>
<th>Odchylenia standardowe σ [MPa]</th>
<th>Współczynnik zmienności ν [%]</th>
<th>Gęstość średnia ρ [g/cm³]</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>3</td>
<td>72.44</td>
<td>2.56</td>
<td>3.54</td>
<td>2.50</td>
</tr>
<tr>
<td>B2</td>
<td>3</td>
<td>79.82</td>
<td>0.76</td>
<td>0.95</td>
<td>2.51</td>
</tr>
<tr>
<td>B3</td>
<td>3</td>
<td>70.15</td>
<td>2.47</td>
<td>3.42</td>
<td>2.49</td>
</tr>
</tbody>
</table>

Wytrzymałość na ściskanie $f_{cm} -$ badanie próbek 150x150x150 mm

<table>
<thead>
<tr>
<th>Nr belki</th>
<th>Ilość próbek</th>
<th>Wartości średnie f_{cm} [MPa]</th>
<th>Odchylenia standardowe σ [MPa]</th>
<th>Współczynnik zmienności ν [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>3</td>
<td>3.02</td>
<td>0.27</td>
<td>8.91</td>
</tr>
<tr>
<td>B2</td>
<td>3</td>
<td>4.62</td>
<td>0.48</td>
<td>10.36</td>
</tr>
<tr>
<td>B3</td>
<td>3</td>
<td>3.82</td>
<td>0.41</td>
<td>10.79</td>
</tr>
</tbody>
</table>

Współczynnik sprężystości E_{cm} [GPa] - badanie próbek $\phi 150/300$ mm

| Nr belki | Ilość próbek | Wartości średnie E_{cm} [GPa] | Współczynnik zmienności ν [%] |
|----------|--------------|-------------------------------|-------------------------------|-------------------------------|
| B3 | 3 | 43.19 | - |

Receptura oraz podstawowe parametry mieszaniki betonowej otrzymane z zakładu produkcyjnego, z którego został dostarczony beton wskazywały iż mieszanka została zaprojektowana na klasę C 25/30 (C.3 w załączniku C). Z kolei badania własne wykazały, iż beton płyty ma właściwości mechaniczne co najmniej jak w przypadku betonu C 55/67. Stąd też w dalszych analizach, będą brane parametry wytrzymałościowe betonu otrzymane w trakcie badań wstępnych. Do dalszej analizy przyjęto również, że wartość modułu sprężystości przy ściskaniu jest równa wartości modułu przy rozciąganiu [Malinin i Rżyśko 1981].

4.2. BADANIA ZASADNICZE

4.2.1. Uwagi ogólne

Właściwe badania doświadczalne były przeprowadzone dla 3 belek zespolonych. Parametry badanych elementów, sposób ich obciążania oraz mierzone wielkości i punkty pomiarowe zostały dokładnie omówione w rozdziale 3 oraz pokazane na fotografiach w załącznikach A i B.

Głównym celem badań było określenie zachowania się statycznie niewyznaczalnej konstrukcji zespolonej z rozciągąną płytą w warunkach laboratoryjnych oraz pogłębienie wiedzy na temat zjawisk zachodzących w konsekwencji rozciągania płyty podczas zginania.
Dodatkową korzyścią było zebranie danych do stworzenia modelu numerycznego (rozdział 6).

Rejestracja wyników odbywała się w sposób ciągły w każdym cyku obciążenia. Natomiast pomiar powstałych rys wykonywano dopiero po osiągnięciu określonego poziomu obciążenia. Oznaczono wówczas liczbę rys, kierunek ich rozwoju oraz zasięg występowania.

W dalszej części rozdziału przedstawiono wyniki poszczególnych wielkości w formie graficznej oraz zestawień tabelarycznych. Wszystkie użyte oznaczenia (podpór, punktów pomiarowych itp.) są zgodne z oznaczeniami zastosowanymi na rysunkach 3.4-3.5 w rozdziale 3.

4.2.2. Wyniki propagacji rys w czasie

W czasie pomiarów propagacji rys w trakcie badań, skoncentrowano się głównie na ich liczbie, rozstawie, zasięgu występowania oraz morfologii. Wszystkich pomiarów dokonywano na każdym poziomie obciążenia. Zgodnie z założeniami rozprawy, głównym obszarem obserwacji była strefa rozciągana. W celu uzyskania pełniejszego obrazu stanu zarysowania w belkach zespolonych wykonano również pomiary w obszarach ściskanych. W strefie podpory środkowej z powodu braku możliwości dostępu do płaszczyzn bocznych płyty na szerokości ~ 30 cm, pomiarów dokonywano odpowiednio na górnej powierzchni płyty bądź też w jej osi. Z kolei w strefach ściskanych, ze względu na zastosowane trawery w miejscu przekazywania obciążenia, utrudniony był dostęp do powierzchni górnej płyty na pasie o szerokości 10 cm.

Tablica 4.2. Ilość rys w zależności od wartości obciążenia

<table>
<thead>
<tr>
<th>Element badawczy</th>
<th>Belka B1</th>
<th>Belka B2</th>
<th>Belka B3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Siła [kN]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obciążenie wywolane 2 siłownikami</td>
<td>70</td>
<td>196</td>
<td>393</td>
</tr>
<tr>
<td>Obciążenie wywolane 1 siłownikiem</td>
<td>70</td>
<td>196</td>
<td>393</td>
</tr>
<tr>
<td></td>
<td>Moment zginający [kNm]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Przęsło 1 (P1-P2)</td>
<td>37</td>
<td>102</td>
<td>203</td>
</tr>
<tr>
<td>Nad podporą P2</td>
<td>38</td>
<td>103</td>
<td>205</td>
</tr>
<tr>
<td>Przęsło 2 (P2-P3)</td>
<td>37</td>
<td>102</td>
<td>203</td>
</tr>
<tr>
<td></td>
<td>Ilość rys [szt.]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Przęsło 1 (P1-P2)</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Nad podporą P2</td>
<td>2*</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>Przęsło 2 (P2-P3)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

*1 Rysa włoskowata
W tablicy 4.2 przedstawiono zestawienie ilości rys w każdej badanej belce w zależności od wartości działającej siły i wywołanego momentu zginającego (przedsielowego i podporowego). Przy obliczaniu liczby rys brano pod uwagę jedynie rysy, które rozciągały się na co najmniej 50% szerokości płyty lub traktowano jako jedną rysę dwie krótsze, położone na przeciwwległych krawędziach płyty, zlokalizowane w tym samym przekroju.

Na rysunkach 4.1–4.3 oraz na fotografiach B.16 i B.17 w załączniku B pokazano końcowy obraz zarysowania płyty. Przy każdej rysie podano wartość obciążenia przy którym się pojawiła a także zasięg jej występowania oraz kolejność pojawiania się. Zarysowane odcinki, w strefie tzw. momentów ujemnych, były podobne w każdej belce i wynosiły odpowiednio 100 cm, 104 cm i 102 cm.

Pomimo wykonania w płytach obustronnych bruzd, jedynie w belce B1 rysa inicjująca powstała w osi podparcia, na szerokości 29 cm. Natomiast w belkach B2 i B3 rysy inicjujące pojawiły się w odległości 5 cm od osi. W belce B3 była to rysa na całą szerokość płyty, natomiast dla belki B2 była to długość równa 10 cm.

Rys. 4.1. Obraz końcowego układu rys belce B1
ANALIZA WYNIKÓW BADAN

Rys. 4.2. Obraz końcowego układu rys w belce B2

Rys. 4.3. Obraz końcowego układu rys w belce B3
W każdej belce zaobserwowano inną morfologię rys co jedynie potwierdziło, że mechanizm rysowania płyty jest bardzo złożony. Aczkolwiek w trakcie badań zaobserwowano, że rysy propagowały zawsze od krawędzi płyty w kierunku jej osi, jednak nie w każdej belce łączyły się z rysami postępującymi od drugiej strony. W trakcie badań zaobserwowano również, że po przyłożeniu maksymalnego obciążenia liczba rys nie ulegała zwiększeniu a jedynie następował wzrost ich rozwartości.

Z kolei w strefie tzw. momentów dodatnich układ rys był charakterystyczny w ściskanej płycie. Wzdłuż osi podłużnej belki w obu kierunkach od miejsca przyłożenia obciążenia, powstała rysa, której długość wynosiła od 117 cm do 180 cm w zależności od belki. Taki obraz zarysowania potwierdza występowanie w płycie naprężeń rozciągających prostopadłych do osi zginanej belki. Naprężenia te musi przejąć odpowiednio zaprojektowane zbrojenie poprzeczne. Badania potwierdziły również duży wpływ zbrojenia prostopadłego do osi belki na jej nośność.

Ostatnim pomiarem związanym z propagacją rys w czasie, był pomiar ich rozstawu, który dokonywano w osi płyty. W tablicy 4.3 zestawiono pomierzone wartości średniego rozstawu rys, na zarysowanych odcinkach oraz podano średnią, obliczeniową odległość między rysami wyznaczoną wg [PN-EN 1992-1-1] z wzoru (5.8).

Tablica 4.3. Średni rozstaw rys nad podporą pośrednią

<table>
<thead>
<tr>
<th>Nr belki</th>
<th>Długość odcinka zarysowanego</th>
<th>Liczba rys</th>
<th>Średni rozstaw rys</th>
<th>Teoretyczny średni rozstaw rys wyznaczony wg PN-EN</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>100</td>
<td>9</td>
<td>11.1</td>
<td></td>
</tr>
<tr>
<td>B2</td>
<td>104</td>
<td>9</td>
<td>10.8</td>
<td>16.6</td>
</tr>
<tr>
<td>B3</td>
<td>102</td>
<td>9</td>
<td>10.4</td>
<td></td>
</tr>
</tbody>
</table>

Końcowy rozstaw rys wynosił około 11 cm i był mniejszy niż rozstaw prętów poprzecznych – 20 cm. Oznacza to, że w belkach ciągłych na odcinku, w którym naprężenia przekraczały wytrzymałość betonu na rozciąganie, rysy nie były generowane przez każdy z poprzecznych prętów zbrojenia.

Można również zauważyć, że wartość średniego rozstawu rys wyznaczona zgodnie z zależnościami zawartymi w Eurokodach, jest o 35%–37% większa niż wartości pomierzone. Potwierdza to jedynie wcześniejsze stwierdzenie, że owe propozycje wymagają dalszych uściśnień i weryfikacji doświadczalnych, zwłaszcza w zakresie belek ciągłych.
4.2.3. Wyniki pomiarów odkształceń (naprężeń)

Podobnie jak w przypadku propagacji rys, w trakcie pomiarów odkształceń nie ograniczono się jedynie do odczytów nad podporą środkową, ale również dokonano pomiarów w przęsle, w miejscu przyłożenia obciążenia zewnętrznego. Czujniki tensometryczne w każdym przekroju, rozmieszczono symetrycznie względem osi dźwigara celem kontroli zbieżności wyników. Stąd też w dalszej części podrozdziału przedstawiono jedynie wyniki wybranych punktów pomiarowych. Ze względu na zbyt dużą rozbieżność otrzymanych wyników odkształceń oraz kątów obrotu (sięgającą nawet około 40 %) między belką B1 a belkami B2 i B3 pominięto je w dalszych analizach jako niewiarygodne.

Otrzymane wyniki zebrano w formie wykresów w zależności siła-odkształcenie. W każdym elemencie badawczym wyznaczono średnią wartość odkształceń ze wszystkich cykli przy danej wartości siły obciążającej.

W pierwszej kolejności, jako dalszy ciąg pomiarów związanych ze zjawiskami zachodzącymi w zginanej płycie betonowej, przedstawiono wyniki odkształceń tensometrów oznaczonych „T19”-„T22”. Punkty pomiarowe „T19” i „T20” odnosiły się do strefy, gdzie występowały siły rozciągające i zamontowano je na górze płyty, w osi podpory środkowej, w odległości 150 mm od krawędzi płyty i 50 mm od końca bruzd wymuszających kontrolowaną rysę. Konstrukcja rozkładająca przyłożone obciążenie zewnętrzne na pasmo poprzeczne spowodowała, że punkty pomiarowe „T21” i „T22” odnoszące się do ściśkanej części płyty betonowej należało zamontować na powierzchniach bocznych, w połowie wysokości płyty.

Rys. 4.4. Odkształcenia średnie płyty: a) przekrój podporowy, b) przekrój przesłowy
Na rysunku 4.4 przedstawiono wartości średnich odkształceń betonu w funkcji przyłożonej siły w przekroju podporowym (przekrój A-A) i przesłowym (przekrój B-B) każdego elementu badawczego.

Pomiaru odkształceń zbrojenia podłużnego, dokonano na dwóch środkowych prętach położonych w górnej warstwie zbrojenia. Na każdy pręt zamontowano po dwa tensometry, na górnej powierzchni i dolnej. Tensometry oznaczone „T1”–„T4” położone były w miejscu wymuszenia kontrolowanej rysy, natomiast punkty „T5”–„T8” w miejscu przyłożenia siły.

Rysunki 4.5 i 4.6 przedstawiają wyniki, które otrzymano odpowiednio w prętach zbrojeniowych rozciąganych oraz prętów zbrojeniowych ściskanych.

Rys. 4.5. Średnie odkształcenia prętów zbrojeniowych rozciąganych, przekrój A-A belek

Rys. 4.6. Średnie odkształcenia prętów zbrojeniowych ściskanych, przekrój B-B belek

Odkształcenia dźwigara stalowego mierzono na trzech różnych wysokościach. W przekroju podporowym: na stopce górnej (punkty pomiarowe „T12” i „T13”), w środku wysokości środnika (punkt pomiarowy „T11”) oraz na dole środnika, bezpośrednio nad stopką (punkty pomiarowe „T9” i „T10”) co było wymuszone poprzez występujące lokalne
krzywizny pasa dolnego. W przekroju przęsłowym punkty pomiarowe rozmieszczono podobnie, czyli: na stopce górnej (tensometry „T17” i „T18”), w środku wysokości środnika (tensometr „T16”) i na spodzie stopki dolnej (tensometry „T14” i „T15”).

Rys. 4.7. Średnie odkształcenia górnej stopki belek: a) przekrój A-A, b) przekrój B-B

Rys. 4.8. Średnie odkształcenia środnika belek: a) przekrój A-A, b) przekrój B-B

Rys. 4.9. Średnie odkształcenia na dole belki stalowej: a) przekrój A-A, b) przekrój B-B
Otrzymane wyniki średnich odkształceń belki stalowej zaprezentowano na rysunkach 4.7-4.9. Na każdym rysunku zestawiono wyniki przy danej wysokości pomiarowej z rozbiciem na odpowiedni przekrój.

Wyniki odkształceń potwierdzają dobrą zbieżność miedzy poszczególnymi elementami badawczymi. Wszystkie belki w trakcie badań, przy zastosowanych obciążeniach pracowały w pełnym zakresie sprężystym (zgodnie z wcześniejszymi założeniami). Maksymalne wartości odkształceń nie przekroczyły wartości 1,8 %.

Otrzymane pomiary wartości odkształceń pozwoliły na określenie rzeczywistego położenia osi obojektnej. Na rysunkach 4.10-4.13 przedstawiono rozkład odkształceń (naprężeń) w przekroju, w zależności od wartości momentu zginającego.

Rys. 4.10. Belka B2: wykresy odkształceń w przekroju obciążonym momentem dodatnim

Rys. 4.11. Belka B3: wykresy odkształceń w przekroju obciążonym momentem dodatnim

Rys. 4.12. Belka B2: wykresy odkształceń w przekroju obciążonym momentem ujemnym
ANALIZA WYNIKÓW BADAŃ

Rys. 4.13. Belka B3: wykresy odkształceń w przekroju obciążonym momentem ujemnym

Obliczeniowa wysokość położenia osi obojętnej mierzona od dolnej powierzchni belki wyznaczona w przekroju przęsłowym wynosiła 311,4 mm natomiast w przekroju podporowym 217,3 mm.

Zmianę położenia rzeczywistej osi obojętnej belki zespolonej w funkcji przyłożonej siły pokazano na rysunku 4.14.

We wszystkich belkach w przekroju podporowym zaobserwowano obniżenie położenia osi obojętnej już przy niskich wartościach przyłożonych sił. Po obniżeniu osi do wysokości około 155 mm nastąpiła jej stabilizacja położenia w całym zakresie przyłożonej siły. Zjawisko to związane było z zarysowaniem płyty betonowej. Z kolei w przekroju przęsłowym nastąpiło podniesienie położenia osi obojętnej względem wartości obliczonej o około 10 mm i następnie jej stabilizacja na poziomie około 320 mm.

Wykorzystując pomierzone wielkości odkształceń oraz zachodzące relacje między naprężeniami a odkształczeniami, i momentem zginającym a naprężeniami wyznaczono lokalną krzywiznę belki (rys. 4.15) z zależności:
ANALIZA WYNIKÓW BADAŃ

\[K = \frac{\varepsilon}{y}, \] (4.1)

gdzie:

\(\varepsilon \) – odkształcenia danych włókien przekroju,

\(y \) – odległość miejsca pomiaru odkształceń od osi obojętnej przekroju.

Rys. 4.15. Lokalna krzywizna badanych elementów: a) przekrój podporowy, b) przekrój przesłowy

W konsekwencji na podstawie pomiaru krzywizny ustalono lokalną sztywność przekroju z relacji:

\[B = \frac{M}{K}, \] (4.2)

któreą pokazano w funkcji momentu zginającego na rysunku 4.16.

Rys. 4.16. Sztywność chwilowa badanych elementów: a) przekrój podporowy, b) przekrój przesłowy
W analizie zachowania się stalowo-betonowych belek zespolonych możemy posługiwać się jedynie sztywnością chwilową. Wynika to w szczególności ze zmieniających się w sposób istotny właściwości betonu w zależności od stopnia jego wytężenia oraz podatności więzów łączących część stalową i betonową.

Oprócz rzeczywistych, zmierzonych wartości, na wykresach naniesiono również wartości obliczone zgodnie z wzorami (2.4) i (2.5) przy założeniu, że sztywność:

- jest równa sztywności zastępczego przekroju stalowego, w którym przekrój betonowy został zastąpiony ekwiwalentnym przekrojem stalowym \(B_1 \),
- jest równa sztywności równoważnego przekroju stalowego (kształtownika i zbrojenia płyty betonowej) \(B_2 \).

4.2.4. Wyniki pomiarów ugięć (przemieszczeń)

Ugięcia belek mierzono w dwóch punktach, w miejscu przyłożenia obciążenia zewnętrznego. Oprócz tego w osi podłużnej belki, nad każdą podporą dokonywano odczytu przemieszczeń pionowych (fot. B.18 i B.19 w załączniku B). Największe wartości zaobserwowano w przypadku punktu pomiarowego U2. Na rysunku 4.17 zaprezentowano wykresy przedstawiające postać krzywych siła-ugięcie w poszczególnych cyklach obciążenia.

- **a)** Belka B2, Czujnik U2
- **b)** Belka B3, Czujnik U2

Rys. 4.17. Zależność siła-ugięcie całości obciążenia w punkcie pomiarowym U2: a) belka B2, b) belka B3

Poczynając od wartości zerowej obciążenia poprzez kolejne cykle, zaobserwowano niewielkie acz stałe przyrosty ugięć trwałych wynoszących około 0,15 mm. Największą wartość przyrostu zanotowano w ostatnim cyklu – 0,95 mm w belce B2 i 0,63 mm w belce B3.
Otrzymane wyniki pozwoliły na wyznaczenie linii ugięcia dla całego elementu badawczego przy wzrastającym obciążeniu. Obraz odkształconych belek na każdym poziomie obciążenia przedstawiono na rysunkach 4.18 i 4.19.

Rys. 4.18. Linia ugięcia belki B2

Rys. 4.19. Linia ugięcia belki B3

Linie ugięć wybranych elementów badawczych w całym zakresie obciążenia były zbliżone do siebie. Na poziomie około 50 % maksymalnego obciążenia zewnętrznego zauważalne jest pojawienie się większej wartości przemieszczeń pasa dolnego pod jedną z sił obciążających (pręsło 1). Co było konsekwencją różnego sposobu wymuszenia obciążenia na poszczególnych przęsłach.

Na rysunku 4.20 przedstawiono również porównanie średnich wartości uzyskanych ugięć każdej badanej belki w funkcji przyłożonej siły.
Dzięki czemu zaobserwowano, że ścieżki równowagi statycznej wykazywały wyraźnie liniowe zachowanie w przyjętym zakresie obciążenia.

4.2.5. Wyniki pomiarów kąta obrotu przekroju belek

Różnice wyników między elementami badawczymi wynikały z różnych poziomów siły wywołujących zarysowanie: 230 kN w belce B2 i 120 kN w belce B3. Natomiast różnice wyników między poszczególnymi podporami w badanych belkach spowodowane były
podobnie jak w przypadku przemieszczeń w płaszczyźnie pionowej różnym sposobem wymuszenia obciążenia na poszczególnych przesłach.

4.2.6. Wyniki pomiarów poślizgu pomiędzy płytą a dźwigarem

Pomiary poślizgu płyty żelbetowej względem dźwigara przeprowadzono, dokonując odczytów na końcu belki przy podporze P1. W tym celu użyto czujnika indukcyjnego zamontowanego do stopki górnej dźwigara (fot. B.21 w załączniku B).

W pracy nie zamieszczono uzyskanych wyników, gdyż otrzymana maksymalna wartość poślizgu wyniosła 0,026 mm. Stąd też do dalszych analiz przyjęto, że poślizg w badanych belkach, w przyjętym zakresie obciążenia nie wystąpił. Zgodnie z wcześniejszymi założeniami można przyjąć, że zespolenie jest niepodatne.

4.3. WNIOSKI Z PRZEPROWADZONYCH DOŚWIADCZEŃ BADAWCZYCH

Oprócz spostrzeżeń zamieszczonych w trakcie analizy otrzymanych wyników, można na podstawie przeprowadzonych badań laboratoryjnych sformułować następujące wnioski końcowe:

1. Rzeczywiste położenie osi obojętnej przekroju zespolonego znajduje się między wyznaczanymi osiami przekroju nie zarysowanego oraz zarysowanego. W momencie pojawiania się nowych rys, oś obojętna przesuwa się ku osi obojętnej przekroju z ustabilizowanym zarysowaniem.

2. Związek pomiędzy krzywizną a momentem zginającym obciążającym belkę w zakresie sprężystym jest właściwie związkiem liniowym, proporcjonalnym do wytężenia przekroju zespolonego.

3. Sztywność belek zespolonych z płytą rozciągłą do chwili zarysowania jest praktycznie stała i w przybliżeniu równa sztywności obliczonej przy założeniu pełnej współodkształcalności części stalowej i betonowej. Wyraźny spadek sztywności zaobserwowano wraz z pojawieniem się pierwszej rysy.

5. Rozstaw rys zależy od rozkładu odkształceń w strefie rozciąganej, na który znaczący wpływ ma położenie osi obojętnej.
6. Rzeczywista sztywność belek zespolonych z płytą ściskaną jest mniejsza od obliczonej teoretycznie.

7. Zmiany sztywności w zakresie odkształceń sprężystych (w zakresie obciążeń eksploatacyjnych) przy wzrastającym obciążeniu są niewielkie i tym samym nie powodują redystrybucji momentów zginających w belce ciągłej.

8. Belki z łącznikami kołkowymi wykazują dużą powtarzalność wyników badań zarówno w zakresie odkształceń jak i stanu zarysowania.

9. Do pełnego opisu ugięć oraz zadania zarysowania belek zespolonych typu stal - beton należy uwzględnić parametr czasu (skurcz i pełzanie betonu) oraz określić wpływ odkształceń termicznych.
5. ANALIZA WYTRZYMAŁOŚCIOWA RZECZYWISTEJ KONSTRUKCJI MOSTU

5.1. WPROWADZENIE

W rozdziale 3 opisano przeprowadzone badania laboratoryjne zespolonych dźwigarów, których głównym zadaniem było rozpoznanie zjawisk zachodzących w rozciąganej płycie podczas zginania. Uzupełnieniem i rozwinięciem części doświadczalnej rozprawy jest przeprowadzona w tym rozdziale analiza wytrzymałościowa.

Analiza miała na celu określenie zachowania się wybranej konstrukcji zespolonej z rozciągana płytą współpracującą w warunkach rzeczywistych. Na potrzeby niniejszej pracy wykorzystano wyniki badań, które były wykonywane podczas próbkowych obciążeń statycznych Mostu Północnego w Warszawie. Dokładny opis obiektu wraz z odpowiednimi rysunkami przedstawiono w dalszej części rozdziału.

Analiza wytrzymałościowa zawiera ocenę współdziałania betonu między rysami w przenoszeniu zginania działającego na przekrój zespolony. Dodatkowo wyznaczono średnie odległości między powstałymi rysami i ich szerokość rozwarcia.

5.2. MODEL BADANEJ KONSTRUKCJI

5.2.1. Opis modelu

Przedmiotowy obiekt usytuowany jest w ciągu Trasy Mostu Północnego w Warszawie. Sam Most Północny składa się z trzech niezależnych obiektów, przy czym obiekt M2 i M3 stanowią dwie prawie „bliźniacze” konstrukcje:

- obiekt M1 – trasa tramwajowa wraz z ciągiem rowerowo – pieszym,

2 Przedstawione w pracy wyniki badań Mostu Północnego pod próbnym obciążeniem zostały udostępnione autorowi przez Instytut Badawczy Dróg i Mostów z siedzibą główną w Warszawie.
Badania rzeczywistych konstrukcji

- obiekt M2 – jezdnia północna Trasy Mostu Północnego,
- obiekt M3 – jezdnia południowa Trasy Mostu Północnego.

Ze względu na brak pełnej dokumentacji technicznej obiektu M1 oraz zmienną liczbę dźwigarów w obiekcie M3, wynikającą ze zmiennej szerokości całkowitej analizę obliczeniową przeprowadzono w przypadku obiektu M2. Stąd też w dalszej części rozprawy obiekty M1 i M3 nie będą omawiane.

Obiekt M2 zaprojektowany został w postaci konstrukcji ciągłej dziesięcioprzęsłowej. Długości teoretyczne w osiach podparć wynoszą odpowiednio (licząc od lewego brzegu rzeki) 45,00 + 65,00 + 110,00 + 160,00 + 110,00 + 66,66 + 2 x 66,67 + 60,00 + 45,00 = 795,00 m.

Pod względem statycznym ustrój jest wieloprzęsłową belką ciągłą. Konstrukcję nośną stanowi zaś stalowy, jednokomorowy dźwigar skrzynkowy, współpracujący z żelbetową płytą pomostu jezdniego (rys. 5.1).

![Rys. 5.1. Typowy przekrój poprzeczny obiektu M2](image)

Wysokość konstrukcyjna dźwigarów jest stała w przęsłach zalewowych i wynosi 3,25 m (wysokość mierzona w osi dźwigara). W głównym przęsle nurtowym o rozpiętości l = 160,0 m i przyległych do niego przęsłach o rozpiętości po l = 110,0 m wysokość konstrukcji stalowej jest zmienna i wzrasta od wysokości 3,25 m w osi przęsła do 8,50 m nad podporami.

Konstrukcja stalowa dźwigara składa się z pasów górnych o stałej szerokości wynoszącej 0,90 m; dwóch środków oraz pasa dolnego o szerokości 6,05 m w częściach mostu o stałej wysokości. W częściach mostu o zmiennej wysokości szerokość pasa dolnego ulega zmniejszeniu od 6,05 m do 4,70 m. Grubość blach w poszczególnych częściach dźwigara jest
zmienna i dostosowana do wielkości sił wewnętrznych. Nominalne grubości blach zawierają się w przedziałach: 25÷180 mm (pasy górne), 10÷80 mm (pasy dolne) i 10÷25 mm (środniki).

Dodatkowo dźwignie blachownicowe stężone są na całej długości poprzecznicami w standardowym rozstawie wynoszącym 5,0 m. Jedynie w przęsłach gdzie pomiędzy podporami długości dźwignarów wynoszą po 66,67 m, w środkach ich rozpiętości, układ poprzecznic jest zaburzony i wynosi 2 x 3,33 m.

Środniki skrzynki oraz pas dolny usztywniony jest przy pomocy żeber zamkniętych o grubości 8 mm i wymiarach 330 x 200 x 270 mm (na środkach) i 450 x 300 x 380 mm (na pasie dolnym).

Do zespolenia konstrukcji stalowej z płytą żelbetową zastosowano sworznie z głowką o średnicy trzpienia 22 mm i 16 mm. Wysokość całkowita sworzni wynosi 200 mm i na każdym dźwigarze w przekroju poprzecznym pasa górnego usytuowane są po 4 w rzędzie. Rozstaw sworzni na długości mostu jest zmienny i waha się w granicach od 150 mm do 300 mm. Na przyczółkach koniec dźwigni skrzynkowego połączone są z żelbetowymi poprzecznicami podporowymi za pomocą sworzni 22 mm.

5.2.2. Materiały i montaż konstrukcji

Konstrukcja stalowa mostu została wykonana z gatunków stali dobranych w zależności od wymaganej grubości poszczególnych blach: odmiany stali S355 i stal S235 na łączniki zespalające. Montaż odbywał się metodą nasuwania podłużnego (część lewobrzeżna i prawobrzeżna) oraz z poziomu terenu (lewobrzeżna i prawobrzeżna część nurtowa) i poprzez podnoszenie z wody środkowej części nurtowej.

Płytę pomostu wykonano z betonu C35/45 zbrojonego prętami ze stali BSt500S, której betonowanie odbywało się odcinkami (7 etapów betonowania), przy pomocy przesuwnych wózków szalunkowych. W pierwszej kolejności betonowano przęsła a następnie strefy podporowe.

5.2.3. Sposób badania mostu

Obiekt M2 Mostu Północnego został poddany badaniom pod próbnym obciążeniem, czyli zastępczemu obciążeniu ruchomemu, które jest nadwyżką nad obciążeniem ciężarem własnym i wyposażenia. Jako obciążenie próbne drogowych obiektów mostowych, przyjmuje się z reguły samochody ciężarowe o schematach odpowiadających danemu typowi pojazdów.
W obciążeniu próbnym zawsze bierze udział ciężar własny natomiast wyposażenie bierze udział w obiektach przed oddaniem do użytku.

Skutki obciążenia próbnego powinny być porównywalne do skutków obciążenia normowego w jego najnajkorzystniejszym ustawieniu. Nie porównuje się samych obciążeń, a ich określone skutki w określonym elemencie i określonym przekroju. W normach zawiera się pewna nadwyżka ponad wartość charakterystyczną obciążenia normowego. Ogólny wzór ma postać [Rybak 1999]:

\[M(G_k, G_{ik}, P) \geq M(\alpha G_k, \beta G_{ik}, \gamma Q_k), \]

gdzie:

- \(G_k \) – charakterystyczny ciężar własny konstrukcji,
- \(G_{ik} \) – charakterystyczny ciężar wyposażenia,
- \(Q_k \) – charakterystyczne obciążenie ruchome (normowe),
- \(\alpha, \beta, \gamma \) – współczynniki, które są większe, równe lub mniejsze od jedności.

W zasadzie, jako obciążenie próbnego mostów zespolonych powinno się stosować obciążenie zmienne o wartości charakterystycznej. Próbne obciążenie ma odpowiadać wartości ekstremalnej obciążenia nieczęstego (rzadkiego), które może się zdarzyć, a nie częstego, charakterystycznego, które są typowe dla konstrukcji. Obciążenia charakterystyczne występować mogą często. Jednak ograniczone możliwości uzyskania obciążeń równoważnych obciążeniom obliczeniowym według modeli normowych stały się przyczyną ograniczenia do poziomu poniżej obliczeniowego.

Próbne obciążenia zwykle są podejmowane przy badaniu ustrojów nośnych, rzadziej przy badaniu podpór i ich fundamentów [Łagoda M. 2003]. Dodatkowo przez próbnne obciążenie można monitorować elementy konstrukcji, które wzbudzają wątpliwości bądź też zostały wzmocnione.

Do obciążenia próbnego analizowanej konstrukcji wykorzystano zestaw 28 czteroosiowych samochodów ciężarowych o średniej masie całkowitej jednego pojazdu równej 31 994 kg.
5.3. RYSY W BELKACH ZESPOLONYCH

5.3.1. Uwagi ogólne

Zasadniczy wpływ na proces tworzenia się rys w belkach zespolonych, wywierają odkształcenia wywołane przez obciążenia zewnętrzne. Istotny wpływ na obraz zarysowania płyty mogą mieć również odkształcenia wywołane przez skurcz betonu czy też zmiany termiczne [Kiernożycki 2003; Flaga 2004]. Aczkolwiek te ostatnie nie są przedmiotem niniejszej rozprawy i w związku z tym w dalszej części pracy będą pomijane.

Za pracę Madaja [2005] rysy w betonowej części belki zespolonej mogą wystąpić, gdy:
1) płyta betonowa jest ściskana – w dolnej jej części, jeśli oś obojętna dźwigara zespolonego nie znajduje się w dźwigarze stalowym (rys prostopadle do osi belki),
2) płyta betonowa jest rozciągana – dotyczy stref tzw. momentów ujemnych (rys prostopadle do osi belki),
3) płyta betonowa jest ściskana, w fazie osiągnięcia nośności granicznej (rys w osi belki).

Z rysami pierwszego rodzaju mamy do czynienia w krępych belkach zespolonych, które są charakterystyczne w budownictwie ogólnym. Mają one wpływ na sztywność belki zespolonej, a ich charakter jest zbliżony do charakteru rys w zginanych elementach żelbetowych (ograniczony zasięg na wysokości przekroju, rozwartość zmniejszająca się w kierunku osi obojętnej).

Rysy drugiego rodzaju, typowe dla stref podporowych belek ciągłych i wspornikowych, są zbliżone do rys w rozbijanych prętach. Charakterystyczną ich cechą jest rozwój na całą wysokość przekroju, natychmiast gdy naprężenia na górnej krawędzi przekroju przekroczy wytrzymałość betonu na rozciąganie.

Rysy trzeciego rodzaju nie mają żadnego wpływu na sztywność przekroju zespolonego i decydują jedynie o nośności granicznej. W celu zminimalizowania ich oddziaływania na nośność konstrukcji należy zaprojektować odpowiednio wytrzymałe zbrojenie prostopadle do osi belki.

Z punktu widzenia analizy sztywności i nośności ciągłych konstrukcji zespolonych ważne są rysy drugiego rodzaju. Ich lokalizacja, rozstaw i rozwój wydają się kluczowe w obliczaniu ugięć oraz redystrybucji momentów zginających, zwłaszcza w zakresie sprężystym, w układach ciągłych. W tym kontekście istotne jest również zagadnienie współpracy betonu rozciąganej ze zbrojeniem w sąsiedztwie rysy.
5.3.2. Mechanizm tworzenia się rys

W miarę wzrostu obciążenia współpraca rozciąganeego zbrojenia z betonem obejmuje trzy fazy:

- faza I – współpracy sprężystej,

W tej fazie istnieje pełne, ciągłe połączenie zbrojenia z betonem. Odkształcenia zbrojeniowej oraz otaczającego ją betonu w każdym przekroju elementu są takie same. Różnica naprężeń rozciągających w betonie \(\sigma_c \) i w zbrojeniu \(\sigma_s = n\sigma_c \), przy tych samych odkształceniach obu materiałów, wynika z różnic ich modułów sprężystości \(n = E_s/E_c \).

- faza II – tworzenie się rys,

Pierwsza rysa powstaje w miejscu, w którym lokalna wytrzymałość betonu na rozciąganie jest najniższa. Ponieważ wytrzymałość betonu w konstrukcji zmienia się losowo, to w przypadkuosiowo rozciąganej pręta usytuowanie pierwszej rysy na jego długości będzie miało również charakter losowy. W miejscu powstania rysy, naprężenia w betonie spadają do zera, natomiast zbrojenie przenosi całą siłę rozciągającą \(\sigma_s = N_{cr}/A_s \) (rys. 5.2). Taka zmiana naprężeń jest możliwa, ponieważ poza rysą występują siły przyczepności zbrojenia do betonu. Zmienność sił przyczepności na długości pręta, z każdej strony rysy, wpływa na redestrybucję naprężeń w betonie [Kiernożycki 2003].

![Rys. 5.2. Naprężenia w otoczeniu pierwszej rysy](image)

Nawet nieznaczny wzrost obciążenia może wywołać kolejne rysy, w miejscach, w których lokalna wytrzymałość betonu na rozciąganie zostanie ponownie przekroczona. Stosunkowo duże odległości pomiędzy rysami pozwalają na zachowanie pomiędzy nimi odcinków, wzdłuż których przyczepność prętów zbrojeniowych do betonu nie została
zniszczona. Wzrost obciążeń zewnętrznych prowadzi do tworzenia się kolejnych rys do chwili, gdy odległości pomiędzy nimi staną się na tyle małe, że proces redystrybucji naprężeń rozciągających w betonie nie jest już możliwy.

- faza III – ustabilizowanego rozmieszczenia rys,

Dalszy wzrost obciążenia wywołuje jedynie wzrost rozwarcia rys powstałych wcześniej. Pomiędzy rysami nie występują odcinki znajdujące się w fazie I. Wzdłuż całego rozciąganego elementu występują różnice odkształceń stali zbrojeniowej i otulającego ją betonu.

W przypadku, gdy siła rozciągająca \(N \) jest mniejsza od siły krytycznej \(N_c \), rozciągany pręt żelbetowy pracuje w fazie I (odkształcenia zbrojenia i betonu są takie same). Wzrost siły \(N \) powoduje wzrost naprężeń rozciągających w betonie. Po osiągnięciu wartości \(N = N_c \), w przekroju o najniższej wytrzymałości powstaje pierwsza rysa (\(\alpha_c = N_c / A_s, \sigma_c = 0 \)). Na odcinkach pręta o długości \(s_0 \), usytuowanych poza strefami odprężenia, odkształcenia i naprężenia w betonie oraz w stali zbrojeniowej są zgodne z założeniami fazy I: \(\varepsilon_c = \varepsilon_s \) i \(\sigma_s = n \sigma_c \).

Dalszy wzrost obciążenia wywołuje fazę ustabilizowanego rozmieszczenia rys, których rozstaw \(s_m \) pozostaje stały, natomiast zwiększa się ich rozwarcie. W przekrojach pomiędzy rysami, część siły rozciągającej przenoszona jest przez zbrojenie, część zaś przez beton. Średnie odkształcenie zbrojenia wzdłuż całego pręta jest zatem mniejsze od tego, które wynikałoby z przyjęcia teorii fazy II [Bulicek i Roos 1992]. Efekt ten (rys. 5.3) określany jest jako usztywnienie przy rozciąganiu lub współpraca betonu rozciąganego między rysami (ang. tension stiffening).

Rys. 5.3. Wykres zależności \(\sigma - \varepsilon \) w zbrojeniu rozciągającym elementów żelbetowych
Różnica odkształceń samego zbrojenia oraz elementu żelbetowego Δ, wynikającego z wpływu współpracy betonu i zbrojenia na odcinku między rysami, w najprostszej postaci określa zależność:

$$\Delta = \Delta \varepsilon_{sm} = \frac{1}{E_s} \beta_1 \beta_2 \left(\frac{\sigma_{tr}^{II}}{\sigma_s^{II}} \right)^2,$$

gdzie σ_{tr}^{II} i σ_s^{II} określają kolejno naprężenia w zbrojeniu wyznaczone w fazie II, przy obciążeniu wywołującym rysy oraz przy obciążeniu założonym, współczynniki β_1 i β_2 uwzględniają wpływ naprężeń przyczepności oraz obciążeń długotrwałych na odkształcenia rozciąganej elementu. Po osiągnięciu przez zbrojenie granicy plastyczności f_{yk} (siła N_{max}), szerokość rozwarcia rys wzrasta.

5.3.3. Szerokość rozwarcia rys

Średnia szerokość rozwarcia rys wynika z różnica odkształceń betonu i stali zbrojeniowej (rys. 5.4).

Rys. 5.4. Odkształcenia w zbrojeniu i betonie rozciąganej w chwili powstania rysy [KIERNOWYCKI 2003]

Przyjmując, że średni odstęp między rysami wynosi s_{rm}, ich rozwarcie określa ogólna zależność:

$$w_m = \int_{a}^{b} (\varepsilon_{c(s)} - \varepsilon_{s(s)}) \, dx.$$

Po uwzględnieniu różnicy odkształceń $\Delta \varepsilon_{sm}$ (rys. 5.3), zbrojenia i betonu zbrojonego, równanie (5.3) przedstawić można w postaci:

$$w_m \equiv s_{rm} \cdot (\varepsilon_{sm} - \Delta \varepsilon_{sm}),$$
Przyjmując zarysowanie za proces już ustabilizowany, obliczeniowa wartość szerokości \(w_k \) rys prostopadłych do osi elementu można wyznaczyć ze wzoru:

\[
 w_k = \beta \cdot \varepsilon_{sm} \cdot s_m. \tag{5.5}
\]

Szerokość rozwarcia rysy wynika z różnicy odkształcenia zbrojenia i betonu \(\varepsilon_{sm} \), na odcinku pomiędzy sąsiednimi rysami \(s_m \).

We wzorze \((5.5) \) przez \(\beta \) oznaczono współczynnik określający zależność między wartościami średnimi i charakterystycznymi szerokości rys (przyjmowany niejednokrotnie \(\beta = 1,7 \)).

Wartość średniego odkształcenia zbrojenia rozciąganej \(\varepsilon_{sm} \), w elementach zarysowanych, można wyznaczyć z równania:

\[
 \varepsilon_{sm} = \frac{G_s''}{E_s} \zeta. \tag{5.6}
\]

Współczynnik uwzględniający sztywność przy rozciąganiu \(\zeta \) określono w zależności od momentu zginającego \(M_k \) i momentu rysującego \(M_{cr} \), w następujący sposób:

\[
 \zeta = \begin{cases}
 0, & M_k < M_{cr}, \\
 1 - \beta_1 \beta_2 \left(\frac{M_{cr}}{M_k} \right)^2, & M_k > M_{cr}.
\end{cases} \tag{5.7}
\]

Współczynniki \(\beta_1 \) i \(\beta_2 \) przyjmuje się w zależności od rodzaju zastosowanego zbrojenia (\(\beta_1 = 1,0 \) dla prętów zebrowanych i \(\beta_1 = 0,5 \) dla prętów gładkich) oraz charakteru obciążenia (\(\beta_2 = 1,0 \) przy obciążeniu jednokrotnym krótkotrwałym i \(\beta_2 = 0,5 \) przy obciążeniach długotrwałych i cyklicznych).

Średnia odległość między rysami \(s_m \), biorąc pod uwagę skutek wewnętrznego i zewnętrznego zbrojenia, może być obliczona zgodnie z [PN-EN 1992-1-1] z równania:

\[
 s_m = k_1 c + k_2 k_3 \frac{\phi}{\rho_{p,eff}}, \tag{5.8}
\]

gdzie:

- \(\phi \) – średnica zbrojenia (w przypadku prętów różnych średnic – średnica zastępcza),
- \(c \) – grubość otulenia zbrojenia podłużnego,
- \(k_1 \) – współczynnik zależny od przyczepności zbrojenia równy 0,8 dla prętów o wysokiej przyczepności (zebrowanych),
k₂ – współczynnik zależny od rozkładu odkształceń, dla zginania równy 0.5,
k₃ – wg Załącznika krajowego; wartość zalecana 3.4,
k₄ – wg Załącznika krajowego; wartość zalecana 0.425,
ρₚ,eff – tzw. efektywny stopień zbrojenia.
Efektywny stopień zbrojenia odnoszony jest do części rozciąganej przekroju poprzecznego elementu Aₖ,eff – mniejsza wartość z 2,5·(hₖ−d)·b lub (hₖ/2)·b – otaczającego zbrojenie: ρₚ,eff = Aₖ/Aₖ,eff.

5.4. ANALIZA WYTRZYMAŁOŚCIOWA BADANYCH DŹWIGARÓW ZESPOLONYCH

Po wstępnym przeanalizowaniu wyników badań obiektu M₂, zdecydowano się rozpatrywać w dalszej analizie obliczeniowej przekrój zlokalizowany nad podporą 90. W związku z tym, zgodnie z założonym zachowaniem konstrukcji, wartości ujemnych momentów zginających w dźwigarach głównych wyznaczono od schematu obciążenia statycznego M₂_WM 100-110 – obciążenie na przęsle 100-110 i 80-90: 14 ciężarówek (rys. 5.5).

Obliczenia statyczne ustrój nośnego zostały wykonane w programie Autodesk Robot Structural Analysis Professional. W tym celu utworzono model z elementów trójwymiarowych usytuowanych również w przestrzeni trójwymiarowej (e³,p³), który odwzorowywał geometrię rozpatrywanej konstrukcji. Zamodelowano jedynie potrzebny przy analizie wycinek obiektu: przęsła 80-90, 90-100 i 100-110 (rys. 5.6).
Dodatkowo w celu generacji przyłożonego obciążenia (sił skupionych od nacisku osi pojazdów ciężarowych) zastosowano nieważką płytę o nieskończenie małej sztywności z wygenerowaną siatką skończoną o geometrii płyty pomostowej. Połączenie konstrukcji z podłożem w osiach łożysk zamodelowano za pomocą więzów odwzorowujących stopnie swobody tych łożysk.

Kolejnym krokiem w analizie wytrzymałościowej było uwzględnienie efektu szerokiego pasa. Na podstawie przybliżonych odległości L_e między zerowymi punktami momentu zginającego wyznaczono efektywną szerokość współpracującą półek (rys. 5.7). Szerokość b_{eff} półki określono ze wzoru [PN-EN 1994-2]:

$$b_{eff} = b_0 + \Sigma b_{ei},$$

gdzie:

- b_0 – odległość między środkami skrajnych łączników na ściśanie,
- b_{ei} – szerokość współpracująca półki z betonu, po każdej stronie środnika, równa $L_e/8$ (ale nie większa niż szerokość geometryczna b_i).

![Rys. 5.6. Wizualizacja modelu obliczeniowego obiektu M2](image)

![Rys. 5.7. Równoważne rozpiętości dla określenia szerokości współpracującej półki z betonu](image)

Objaśnienia:
1. $L_e = 0.85 L_1$ dla $h_{eff,1}$
2. $L_e = 0.25(L_1 + L_2)$ dla $h_{eff,2}$
3. $L_e = 0.70 L_2$ dla $h_{eff,1}$
4. $L_e = 2 L_1$ dla $h_{eff,2}$
Ostatecznie do dalszej analizy przyjęto przekrój dźwigara pokazany na rysunku 5.8.

![Diagram of the analyzed section](image)

Rys. 5.8. Przyjęty przekrój obliczeniowy dźwigara na podporą 90

W przyjętym w obliczeniach przekroju, wyznaczono maksymalną wartość momentu rysującego M_c, z wzoru:

$$M_c = f_{cm} \cdot W_1,$$

(5.10)

gdzie:

- f_{cm} – średnia wytrzymałość betonu płyty na rozciąganie,
- W_1 – wskaźnik wytrzymałości przekroju na zginanie.

Wskaźnik wytrzymałości przekroju na zginanie wyznaczono w II fazie pracy konstrukcji, czyli dla przekroju zespolonego:

$$W_1 = \frac{I_z \cdot n}{d_c},$$

(5.11)

gdzie:

- I_z – moment bezwładności przekroju zespolonego,
- n – stosunek modułów sprężystości, odpowiednio stali i betonu $n = E_s / E_{cm}$,
- d_c – odległość od środka ciężkości przekroju zespolonego do włókien górnych płyty.

Następnie wyznaczono średnie odkształcenia zbrojenia rozciągającego σ_s (σ_s^{II}) z uwzględnieniem wpływu betonu na odcinku między rysami obliczono z zależności:

$$\sigma_s = \sigma_{s,0} + \Delta \sigma_s,$$

(5.12)
przy:

\[\Delta \sigma_s = \frac{0.2 \cdot f_{ctm}}{\alpha_s \cdot \rho_s}, \quad (5.13) \]

\[\alpha_s = \frac{A \cdot I}{A_a \cdot I_a}, \quad (5.14) \]

gdzie:

\(\rho_s \) – stopień zbrojenia obliczony jako stosunek powierzchni zbrojenia \(A_s \) do efektywnego pola powierzchni półki betonowej wewnątrz strefy rozciąganej \(A_{ct} \),

\(A \) i \(I \) – odpowiednio powierzchnia i moment bezwładności efektywnego przekroju zespolonego z pomięciem betonu rozciąganej, \(A_a \) i \(I_a \) – odpowiednio powierzchnia i moment bezwładności przekroju stali konstrukcyjnej.

Do wyznaczenia naprężeń w zbrojeniu rozciągającym \(\sigma_{s.o} \) z pomięciem wpływu betonu na odcinkach między rysami przyjęto następujące parametry geometryczne przekroju (rys. 5.9):

Rys. 5.9. Przyjęty przekrój do wyznaczenia naprężeń w zbrojeniu rozciągającym z pomięciem współpracy betonu

Ze względu na występowanie w rozpatrywanym przekroju różnych średnic prętów zbrojeniowych wyznaczono średnią zastępczą \(\phi_{eq} \):
która została wykorzystana przy wyznaczaniu zastępczej szerokości zbrojenia b_{eq}. Naprężenia w zbrojeniu rozciągającym wyznaczono z:

$$\sigma_{s.o} = \frac{M_{\text{max}}}{W_{zs}}, \quad (5.16)$$

gdzie:

W_{zs} – wskaźnik wytrzymałości przekroju zastępczego dla zbrojenia A_s.

Natomiast współczynnik uwzględniający sztywność przy rozciąganiu dobrano zgodnie z zależnościami podanymi we wzorze (5.7). Potem wyznaczono średnią odległość między rysami s_m z (5.8) w tym efektywne pole rozciągane. Znając wartość średniego odkształcenia zbrojenia rozciągającego ε_{sm} oraz średnią odległość między rysami wyznaczono wartość szerokości rys w_k z wzoru (5.5).

Ostatnim elementem w analizie obliczeniowej było określenie wpływu współdziałania betonu między rysami w przenoszeniu zginania działającego na przekrój zespolony. W tym celu moment M (wywołujący rozciąganie w płycie betonowej) może być zastąpiony przez siły N_a i M_a oraz N_s i M_s na wyodrębnione elementy, gdzie moment zginający M_s w elemencie rozciągającym może być pominięty ($M_s \approx 0$) dla określenia N_s. Stąd też moment $M = M_a + N_s$, a w przekroju poprzecznym jest podzielony na moment części stalowej M_a i na siły normalne $N_a = -N_s$ działające na ramieniu a (rys. 5.10).

Rys. 5.10. Siły wewnętrzne przenoszące całkowity moment zginający M

Z warunku równowagi dla punktu przyłożenia siły w dźwigarze stalowym, otrzymano zależność do wyznaczenia rzeczywistej nośności przekroju:

\[
\phi_{eq} = \frac{n_1 \phi_1^2 + n_2 \phi_2^2}{n_1 \phi_1 + n_2 \phi_2}, \quad (5.15)
\]
gdzie:

\[a \] - ramię wypadkowej naprężeń.

Siłę \(N_s \) wyznaczono z uwzględnieniem wpływu betonu na odcinkach między rysami z wzoru:

\[N_s = \sigma_s \cdot A_s, \]
(5.18)

oraz z jego pominięciem z:

\[N_s = \sigma_{s,0} \cdot A_s, \]
(5.19)

Na rysunku 5.11 przedstawiono końcowe wyniki liczbowe naprężeń rozpatrywanego przekroju.

Rys. 5.11. Rzeczywiste wartości momentów zginających występujących w rozpatrywanym przekroju po zarysowaniu

Można zauważyć, że wartość momentu, jaki przenosi przekrój zespolony po zarysowaniu z uwzględnieniem współpracy betonu na odcinkach między rysami jest o \(\sim 4\% \) większa niż wartość momentu wyznaczona bez jej uwzględnienia. Należy w tym miejscu podkreślić, iż uwzględnienie wpływu betonu zostało przeprowadzone metodą uproszczoną zaproponowaną w [PN-EN 1994-2].
5.5. WNIOSKI Z ANALIZY WYTRZYMAŁOŚCIOWEJ

Na podstawie przeprowadzonej analizy wytrzymałościowej, można sformułować następujące wnioski:

1. Rzeczywista nośność przekrojów zespolonych jest większa od obliczonej zgodnie z obecną praktyką inżynierską, tj. bez uwzględnienia sztywności betonu rozciąganej. Daje to w efekcie niepotrzebne zwiększenie zużycia stali konstrukcyjnej i zbrojeniowej.

2. Uwzględnienie sztywności betonu na odcinkach między rysami jest nie tylko nowoczesnym, bliskim rzeczywistości podejściem do oceny nośności i użytkowalności konstrukcji, ale daje również wymierne efekty ekonomiczne.

3. Istnieje potrzeba opracowania algorytmu obliczeniowego uwzględniającego wpływ zarysowania rozciąganej płyty betonowej przy określaniu stanów granicznych nośności i użytkowalności mostowych konstrukcji zespolonych o schematach statycznych wywołujących ujemne momenty zginające.
6. SYMULACJA KOMPUTEROWA MECHANIZMU TWORZENIA SIĘ RYS W DŹWIGARZE

6.1. WPROWADZENIE

Przedstawione w rozdziale 3 badania doświadczalne dźwigarów mostowych o zbliżonej skali do rzeczywistej oraz zaprezentowana w rozdziale 5 analiza rzeczywistych konstrukcji posłużyły, jako punkt odniesienia do przeprowadzenia obliczeń komputerowych belek zespolonych z rozciągana, zarysowaną płyta.

W trakcie rozwoju obszarów zarysowanych występuje redystrybucja naprężeń w konstrukcji zespolonej, co w skrajnych przypadkach może prowadzić do znacznej zmiany schematu statycznego konstrukcji. Istnieje także drugi aspekt tego zagadnienia związany z obliczaniem konstrukcji zespolonych w fazie nieliniowych właściwości betonu i stali. Do badań numerycznych użyto programu opartego o metodę elementów skończonych – Abaqus firmy Dassault Systèmes, zawierającego źródła algorytmów numerycznych i programów MES, w których występuje zarówno nieliniowość o charakterze geometrycznym jak i materiałowym [Szturomski 2013].

Budowane modele zostały wykorzystane do przeprowadzenia obliczeń konstrukcji poddanych badaniom laboratoryjnym. Następnie wykonano kalibrację, polegającą na odpowiednim „dopasowaniu” modelu przez jego modyfikację aż do uzyskania satysfakcjonujących zbieżności wyników obliczeń komputerowych z wartościami pomierzonymi oraz minimalizację liczby elementów skończonych i komplikacji siatki elementów. Na tym etapie została również przeprowadzona końcowa kalibracja modelu obliczeniowego.

Istotną częścią tego rozdziału jest również identyfikacja parametrów konstytutywnych na podstawie wytrzymałości betonu, otrzymanych w wyniku badań wstępnych (punkt 4.1.2 w rozdziale 4), a także opis zastosowanego modelu betonu plastycznego ze zniszczeniem.
6.2. METODA ELEMENTÓW SKOŃCZONYCH

Obecnie, wraz z większą wydajnością systemów obliczeniowych oraz możliwością ich zastosowania w procesie analizy i projektowania konstrukcji inżynierskich nastąpił intensywny rozwój metod numerycznych używanych w zakresie obliczeń statycznych, wymiarowania i analizy zachowania konstrukcji. Metody numeryczne niejednokrotnie są jedyną drogą do uzyskania praktycznie przydatnych rozwiązań w analizie złożonych ustrojów przestrzennych wykonanych z materiałów niepodlegających prawom liniowej sprężystości. Metody numeryczne prowadzą zawsze do rozwiązań przybliżonych, gdyż układ równań różniczkowych jest zastąpiony układem równań algebraicznych, a dokładne rozwiązanie w postaci zamkniętego wzoru analitycznego jest zastępowane zbiorem liczb opisującym rozpatrywane zjawisko. Symulacje komputerowe stworzyły możliwość analizowania zagadnień trudnych i złożonych, co w znacznym stopniu przyczynia się do redukcji kosztów związanych z przeprowadzeniem badań doświadczalnych. Stąd też wirtualne modele numeryczne stają się dzisiaj podstawowym środkiem do prowadzenia analiz. W praktyce procedury projektowania, które opierały się na wypracowanych przez dziesięciolecia metodach analitycznych zostają wyparte przez metody numeryczne.

Modele obliczeniowe można analizować przy zastosowaniu różnych metod numerycznych, aczkolwiek najpopularniejsze są symulacje wirtualne rzeczywisty procesów w systemach opartych na Metodzie Elementów Skończonych (MES). We współczesnym piśmiennictwie jest wiele monografii i artykułów poświęconych tej metodzie. Do podstawowych prac w tym zakresie należą [Zienkiewicz 1972; Crisfield 1986; Zienkiewicz i Taylor 2000].

Sama Metoda Elementów Skończonych jest jedną z metod dyskretyzacji układów geometrycznych ciągłych, tj. podziału kontinuum na skończoną liczbę podobszarów. Wobec powyższego, idea metody zakłada modelowanie nawet bardzo złożonych konstrukcji (części i zespołów) poprzez ich reprezentację za pomocą możliwie prostych geometrycznie elementów składowych, nawet z uwzględnieniem nieciągłości i wielofazowości materiałowych.

Główne założenie MES to podział modelu geometrycznego ciągłego (rys. 6.1) na elementy skończone, łączące się w tzw. węzłach, czego efektem jest utworzenie modelu geometrycznego dyskretnego. Należy w tym miejscu podkreślić, iż efektem dyskretyzacji jest transformacja układu o nieskończonej liczbie stopni swobody (zdolności do zmiany wartości określonej współrzędnej) do postaci układu o skończonej liczbie stopni swobody (SSW):
symulacja komputerowa mechanizmu tworzenia się rys w dźwigarze

\[S = \sum_{i}^{n} S_i, \text{gdzie } n \to \infty, \quad (6.1) \]

przy czym, że względów praktycznych osiągnięcie warunku \(n \to \infty \) jest trudne do zrealizowania.

\[S = S_1, \text{gdzie } n \to \infty, \quad (6.1) \]

przy czym, że względów praktycznych osiągnięcie warunku \(n \to \infty \) jest trudne do zrealizowania.

Rys. 6.1. Dyskretyzacja modelu ciągłego – transformacja w zbiór (siatkę) elementów skończonych: a) model geometryczny ciągły, b) model dyskretny idealny, c) model dyskretny obliczeniowy

W trakcie obliczeń dyskretyzacji ulegają również wszelkie inne wielkości fizyczne, reprezentowane w układzie za pomocą funkcji ciągłych (np. obciążenia, utwierdzenia, przemieszczenia, naprężenia). Stąd też podczas dyskretyzacji określonej wielkości fizycznej dąży się do maksymalnego zbliżenia jej postaci dyskretnej i ciągłej z zastosowaniem metod aproksymujących.

Aby rozwiązać poszczególne zadanie mechaniki (np. z dziedziny wytrzymałości materiałów) należy zwrócić uwagę na fizyczne otoczenie układu, tj. w przypadku układu przedstawionego na rysunku 6.1a: wymuszenie (obciążenie ciągłe \(q \)) oraz utwierdzenie (stałe ciągłe wraz z podporą przesuwną).

Wymuszenie oraz utwierdzenie noszą umowne określenie warunków brzegowych układu. Chcąc doprowadzić do uzyskania żądanych wyników z zastosowaniem MES należy zbudować tzw. macierze sztywności, początkowo macierze lokalne (na podstawie wartości współrzędnych węzłów oraz wartości parametrów fizycznych elementów), a następnie tzw. macierz globalną. Kolejnym etapem jest budowa globalnego wektora obciążenia, po czym następuje rozwiązanie układu równań i obliczenie sił wewnętrznych oraz reakcji węzłów.

Współczesne aplikacje inżynierskie CAE (ang. Computer – Aided Engineering), w których stosuje się MES składają się z trzech wzajemnie współpracujących modułów, którymi są:
• preprocesor (służy m.in. do importu lub przygotowania geometrii, doboru rodzaju elementów skończonych, dyskretyzacji kontinuum, a także przyłożenia warunków brzegowych),
• solver (moduł przeznaczony do budowy oraz rozwiązania układu równań, na podstawie którego uzyskuje się poszukiwane wartości danych wielkości fizycznych),
• postprocesor (moduł służący do prezentacji oraz wspomagania interpretacji uzyskanych wyników).

Oprócz tego rozbudowane możliwości metody umożliwiają rezygnację z modeli belkowych i realne, inżynierskie projektowanie na modelach powierzchniowych a nawet objętościowych [Żółtowski i Romaszkiewicz 2009].

Dodatkową korzyścią rozwoju technik obliczeniowych jest również odejście od prostej, liniowej analizy wytrzymałościowej i zastosowanie bardziej złożonych algorytmów uwzględniających nieliniowe związki fizyczne materiału [Rusiński i in. 2000]. W obszarze analiz wytrzymałościowych, obliczenia wytrzymałościowe z uwzględnieniem nieliniowości fizycznych wykonuje się najczęściej:

• w obiektach, których materiał znajduje się w zakresie nieliniowym, podczas normalnej eksploatacji,
• przy wymiarowaniu konstrukcji zgodnie z wymogami nośności granicznej,
• oraz w celu wyznaczenia wartości energii zniszczenia (siły niszczącej) obiektów.

Aby prawidłowo zdefiniować, a następnie rozwiązać zadanie nieliniowe w metodzie elementów skończonych należy przede wszystkim określić model materiału i związki konstytutywne.

W odróżnieniu od materiału liniowo sprężystego, gdzie związki między odkształceniem a naprężeńiem i między odkształceniem i przemieszczeniem są liniowe, niezmienne w całym zakresie, tu uzyskujemy sprzężenie między charakterystykami materiału i wartościami określającymi aktualny stan materiału (przemieszczenie, naprężeń, odkształcenie), a nawet historią stanu materiału (np. utwardzenie) i prędkością zmiany stanu materiału (zagadnienia związane z lepkością). Stąd też rozwiązanie zadania opiera się na technice przyrostowej, polegającej na krokowym zwiększaniu parametrów wejściowych, rozwiązywaniu zadania na poszczególnych krokach i sterowaniu charakterystykami materiału poprzez uzyskane wyniki cząstkowe. Jak każdy proces iteracyjny, rozwiązanie ma charakter niejednoznaczny, zależy od zastosowanej techniki przyrostowej i metod iteracji na poszczególnych krokach.
W większości przypadków, niezależnie od zastosowanych modeli materiału, sformułowanie zadania polega na sprowadzeniu modeli nieliniowych do skończonej liczby cząstkowych modeli liniowych i następnie odpowiednie stosowanie technik interpolacji. Ponieważ ogólny model materiału, uwzględniający bardzo różne zjawiska, byłby bardzo rozbudowany i wymagałby bardzo złożonych metod rozwiązywania, w zależności od potrzeb stosujemy modele uwzględniające tylko niektóre zjawiska.

6.3. MODEL BETONU PLASTYCZNEGO ZE ZNISZCZENIEM

6.3.1. Uwagi ogólne

Prawidłowy opis zniszczenia betonu jest podstawowym zagadnieniem, gdy rozważa się zachowanie betonu w konstrukcji przy zaawansowanych deformacjach. W betonie na skutek rozwoju istniejących mikrorys dochodzi do osłabienia materiału. To zjawisko na gruncie mechaniki ośrodków ciągłych definiuje się, jako uszkodzenie, w trakcie którego macierz sztywności stycznej przestaje być dodatnio określona. Przypadek ten pojawia się w przypadku rozciągania betonu, kiedy to na skutek rozwoju uszkodzenia macierz sztywności stycznej jest ujemnie określona, co prowadzi do lokalizacji odkształceń. Z matematycznego punktu widzenia dochodzi do zmiany typu cząstkowych równań różniczkowych, które rządzą procesem z eliptycznego na hiperboliczny. Przez to zadanie jest źle uwarunkowane i w konsekwencji otrzymane rozwiązanie zależy od gęstości zastosowanej dyskretyzacji [Pietruszczak i Mróz 1981].

6.3.2. Opis matematyczny

Równanie konstytutywne [Kachanow 1958; Lubliner i in. 1989] materiału ze skalarnym zniszczeniem przedstawia się następująco:

\[\sigma = (1 - d)D^\text{0} : (\varepsilon - \varepsilon^\text{d}) = \bar{D}^\text{0} : (\varepsilon - \varepsilon^\text{d}) , \]

gdzie:

- \(\sigma \) – tensor naprężenia Cauchy’ego,
- \(d \) – skalarny parametr zniszczenia (degradacji sztywności),
- \(\varepsilon \) – tensor odkształceń,
- \(d^\text{0} \) – skalarny parametr zniszczenia (degradacji sztywności),
- \(D^\text{0} \) – początkowy tensometr sprężystej sztywności konstytutywnej,
\[D^{el} = (1 - d) D_0^{el} \] – zdegradowany tensor sprężystej sztywności konstytutywnej.

Niezbędne jest określenie efektywnego tensora naprężeń na podstawie równania (6.2) jako:

\[
\bar{\sigma} = D_0^{el} : (\varepsilon - \varepsilon^{pl}),
\] \hspace{1cm} (6.3)

gdzie:

\[\varepsilon^{pl} \] – tensor odkształceń plastycznych,

oraz ewolucji parametru zniszczenia \(d \), zgodnie z regułą:

\[d = d(\bar{\sigma}, \bar{\varepsilon}^{pl}). \] \hspace{1cm} (6.4)

Zmienna \(d \) jest funkcją naprężeń efektywnych \(\bar{\sigma} \) oraz ekwiwalentnych odkształceń plastycznych \(\bar{\varepsilon}^{pl} \). W modelu betonu plastycznego ze zniszczeniem sztywność materiału jest początkowo izotropowa, jednak podczas procesu degradacji sztywności jest określona przez dwie zmienne \(d_c \) w strefie ściskania i \(d_t \) w strefie rozciągania.

Ostatecznie, tensor naprężeń Cauchy’ego \(\sigma \) jest proporcjonalny do tensora naprężeń efektywnych \(\bar{\sigma} \), a współczynnikiem proporcjonalności jest \((1 - d) \):

\[\sigma = (1 - d) \bar{\sigma}. \] \hspace{1cm} (6.5)

Zniszczenie materiału przy ściskaniu i rozciąganiu jest określone niezależnie przez dwie zmienne, odpowiednio \(\bar{\varepsilon}^{pl}_c \) i \(\bar{\varepsilon}^{pl}_t \), które określają ekwiwalentne odkształcenia (przy ściskaniu i rozciąganiu):

\[
\bar{\varepsilon}^{pl} = \begin{bmatrix} \bar{\varepsilon}_c^{pl} \\ \bar{\varepsilon}_t^{pl} \end{bmatrix},
\] \hspace{1cm} (6.6)

\[
\dot{\bar{\varepsilon}}^{pl}_t = h(\bar{\sigma}, \bar{\varepsilon}^{pl}) \dot{\bar{\varepsilon}}^{pl}.
\]

Zarysowanie (w rozciąganiu) oraz zgniecenie (w ściskaniu) w betonie jest reprezentowane przez wzrost zmiennej wzmocnienia (osłabienia). Wielkości te kontrolują ewolucję powierzchni obciążenia \(F \) oraz degradację sztywności materiału.

Powierzchnia obciążenia określa stan odkształceń, jako funkcja naprężeń oraz efektywnych odkształceń plastycznych. W przypadku nielepkiego plastycznego modelu ze zniszczeniem, stan naprężeń i odkształceń musi spełniać warunek:

\[F(\sigma, \bar{\varepsilon}^{pl}) \leq 0. \] \hspace{1cm} (6.7)
Plastyczne płynięcie określane jest przez funkcję potencjału plastycznego $G(\sigma)$ oraz niestowarzyszone prawo płynięcia w postaci:

$$\dot{\varepsilon}^{\text{pl}} = \lambda \frac{\partial G(\sigma)}{\partial \sigma}.$$ \hspace{1cm} (6.8)

Model materiału plastycznego ze zniszczeniem jest jedną z wielu możliwości modelowania betonu [Kmicik i Kamiński 2011], w którym istotne jest określenie prawidłowych parametrów konstytutywnych, co pozwala na prawidłowe jakościowe jak i ilościowe porównanie wyników numerycznych z eksperymentalnymi.

6.3.3. Hipoteza Druckera – Pragera

Zniszczenie betonu może być podzielone na dwa typy. Pierwszy odnosi się do pękania przy rozciąganiu, które jest związane z pojawieniem się dominującej rysy i spadkiem nośności w kierunku prostopadłym do niej [Chen A. i Chen W. 1975], drugi zaś jest związany z zgniataniem podczas ściskania, w trakcie którego dochodzi do rozwoju i ewolucji wielu małych rys i w efekcie utraty większości wytrzymałości betonu związanej z pokruszeniem.

Wytrzymałość betonu w złożonym stanie naprężeń jest zależna od stopnia złożoności stanu naprężeń panującego w materiale. Nie może więc być określana na podstawie tylko prostych testów, takich jak jednoosiowe ściskanie lub rozciąganie. Zatem wytrzymałość betonu może być określana tylko poprzez uwzględnienie wzajemnej interakcji różnych składowych stanu naprężeń.

Stąd też chcąc opisać wytrzymałość betonu równaniem stanu trójosiowego, należy przedstawić jej płaszczyznę w trójwymiarowej przestrzeni naprężeń (dla materiału izotropowego, jakim uznawany jest beton w szerokim zakresie naprężeń), gdzie na powierzchni znajdują się stany naprężeń odpowiadające zniszczeniu materiału, zaś wewnątrz stany bezpiecznej pracy. Dodatkowo wewnątrz przestrzeni zlokalizowana jest tzw. powierzchnia potencjału plastycznego, po przekroczeniu której mamy do czynienia z dwiema sytuacjami [Majewski 2003]:

- wzrost odkształceń bez zmiany naprężeń (idealna plastyczność),
- osłabienie materiałowe – destrukcja materiału.

Jedną z najczęściej stosowanych hipotez wytrzymałościowych w betonie jest hipoteza Druckera-Pragera [Drucker 1959; Prager 1952], zgodnie z którą o zniszczeniu decyduje energia odkształcenia postaciowego, a sama powierzchnia graniczna w przestrzeni naprężeń przyjmuje kształt stożka (rys. 6.2). Zaletą stosowania tego kryterium zniszczenia jest gładkość
powierzchni i co z tym się wiąże brak komplikacji przy zastosowaniach numerycznych, a wadą nie pełna zgodność z rzeczywistym zachowaniem betonu [Majewski 2003].

Model betonu plastycznego ze zniszczeniem CDP (ang. Concrete Damage Plasticity) stosowany w programie Abaqus jest modyfikacją hipotezy wytrzymałościowej Druckera-Pragera. Na przestrzeni ostatnich lat wprowadzono w niej kolejne modyfikacje [Lubliner i in. 1989; Lee i Fenves 1998], według których powierzchnia zniszczenia w przekroju dewiatorowym nie musi być kołem i jest regulowana przez parametr K_c. Interpretacją fizyczną parametru K_c jest stosunek odległości pomiędzy osią hydrostatyczną do południków ściskania i rounitàangania w przekroju dewiatorowym, Stosunek ten jest zawsze większy od 0,5. W przypadku gdy jego wartość wyniesie 1 to przekrój dewiatorowy powierzchni zniszczenia staje się okręgiem – jak w klasycznej hipotezie wytrzymałościowej Druckera-Pragera (rys. 6.3).

Rys. 6.3 Przekrój dewiatorowy powierzchni zniszczenia w modelu betonu CDP

Podobna zmiana dotyczy kształtu południków płaszczyzny w przestrzeni naprężeń, które są liniami krzywymi. W modelu betonu CDP powierzchnia potencjału plastycznego w płaszczyźnie południkowej przybiera postać hiperboli (rys. 6.4). Regulacja kształtu następuje poprzez parametr mimośrodowości potencjału plastycznego – Eccentricity. Jest to długość odcinka mierzonego wzdłuż osi hydrostatycznej między wierzchołkami hiperboli, a przecięciem asymptot tej hiperboli (środek hiperboli). Parametr Eccentricity można obliczyć jako stosunek wytrzymałości na rozciąganie do wytrzymałości na ściskanie [Jankowiak I., Kąkol i Madaj 2005]. Zalecaną wartością dla modelu CDP jest $\varepsilon = 0,1$. W granicznym przypadku, gdy jest on równy zero, powierzchnia staje się w płaszczyźnie południkowej linią prostą – klasyczna hipoteza Druckera-Pragera.

Rys. 6.4. Hiperboliczna powierzchnia potencjału plastycznego w płaszczyźnie południkowej

Kolejnym parametrem, który opisuje zachowanie betonu jest określenie punktu, w którym ulega on zniszczeniu w trakcie dwuosowego ściskania (rys. 6.5). Wartość σ_{60}/σ_{c0} (f_{60}/f_{c0}) określa stosunek wytrzymałości betonu w stanie dwuosowym, do wytrzymałości w stanie jednoosiowym.

Rys. 6.5. Wytrzymałość betonu w dwuosiowym stanie naprężenia w modelu CDP

Ostatnim parametrem opisującym zachowanie się betonu w złożonym stanie naprężenia jest *Dilation Angle*, czyli kąt nachylenia asymptoty powierzchni zniszczenia w stosunku do osi hydrostatycznej, mierzony w płaszczyźnie południkowej (kąt tarcia wewnętrznego w betonie). W analizach numerycznych niejednokrotnie przyjmuje się wartość równą $\beta = 36^\circ$ [Jankowiak I., Kąkol i Madaj 2005; Jankowiak I. i Madaj 2011].

W tablicy 6.1 zestawiono parametry modelu betonu CDP określające jego pracę w złożonym stanie naprężenia [Abaqus User’s Manual 2012].

<table>
<thead>
<tr>
<th>Parametr</th>
<th>Wartość</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dilatation Angle β</td>
<td>36°</td>
</tr>
<tr>
<td>Eccentricity ε</td>
<td>0,10</td>
</tr>
<tr>
<td>f_{welf}_{co}</td>
<td>1,16</td>
</tr>
<tr>
<td>K_c</td>
<td>0,667</td>
</tr>
<tr>
<td>Viscosity Parameter μ</td>
<td>0</td>
</tr>
</tbody>
</table>

6.3.4. Identyfikacja parametrów betonu ściskanego

Najdokładniejszą metodą opisu związku naprężeń oraz odkształceń jest wykonanie testów jednoosiowego ściskania zastosowanego betonu i następnie dokonanie transformacji zmiennych z otrzymanego wykresu. W modelu CDP należy wyznaczyć tzw. odkształcenia
niesprzężyte ε_{c}^m, poprzez odjęcie od odkształceń całkowitych (rejestrowanych w teście jednoosiowego ściskania) część sprężystą odpowiadającą niezniszczonemu materiałowi:

$$\varepsilon_{c}^m = \varepsilon_c - \varepsilon_{0c}^d,$$

(6.9)

$$\varepsilon_{0c}^d = \frac{\sigma_c}{E_0}.$$

(6.10)

W trakcie transformacji odkształceń należy ustalić moment, od którego materiał będzie definiowany jako nieliniowo sprężysty (rys. 6.6).

Rys. 6.6. Krzywa naprężenie-odkształcenie betonu przy jednoosiowym ściskaniu

Badania laboratoryjne (testy jednoosiowe) wykazują, że takie zachowanie materiału występuje niemal od początku procesu ściskania, lecz w większości analiz numerycznych może ono być w fazie początkowej pomijalne. Majewski [2003] podaje, że koniec sprężystości liniowej powinien rosnąć wraz ze wzrostem wytrzymałości betonu i stąd też powinien być bardziej przyjęty niż wyznaczony na podstawie badań. Dodatkowo określił go jako procentową wartość naprężeń w stosunku do wytrzymałości betonu, zgodnie z zależnością:

$$\varepsilon_{im} = 1 - \exp\left(\frac{-f_c}{80}\right).$$

(6.11)
Prostszą metodą określenia tego pułapu jest arbitralne przyjęcie go jako 0,4·f_{cm}. Zgodnie z [PN-EN 1992-1-1] moduł sprężystości betonu określa się jako sieczny w zakresie 0-0,4·f_{cm}. Warto na tym etapie założyć taki pułap początku fazy niesprężystej, dzięki któremu wartość początkowa modułu Younga oraz wartość sieczna były ze sobą zbliżone. Z reguły w większości analiz numerycznych badaniu podlega faza osiągnięcia wytrzymałości materiału, a nie faza początkowej jego pracy. Przyjęcie takiego poziomu daje większą pewność uzyskania zbliżenia rozwiązania.

Po zdefiniowaniu zmiennych naprężenie-odkształcenie (ang. Yield Stress – Inelastic Strain) należy określić zmienną degradacji d_c, która dla materiału niezniszczonego wynosi 0 oraz wartość 1 w przypadku całkowitej utraty zdolności w przenoszeniu naprężeń:

$$d_c = d_c \left(\bar{\varepsilon}_c^{pl}, f_i \right) \text{ w przypadku } 0 \leq d_c \leq 1.$$ \hspace{1cm} (6.12)

Wartości te również mogą być odczytane z testów jednoosiowego ściskania, obliczając w odpowiedni sposób stosunek wartości naprężeń opadającej gałęzi wykresu do wytrzymałości betonu na ściskanie. Stąd też model CDP określa odkształcenia jako:

$$\bar{\varepsilon}_c^{ef} = \bar{\varepsilon}_c^{in} - \frac{d_c}{1-d_c} \cdot \frac{\sigma_c}{E_0}.$$ \hspace{1cm} (6.13)

We wzorze (6.13) E_0 oznacza początkowy moduł sprężystości materiału niezniszczonego. Na podstawie wartości odkształceń plastycznych, można wyznaczyć naprężenia σ_c w przypadku ściskania jednoosiowego oraz ich efektywne wartości $\bar{\sigma}_c$ opisujące rozmiar powierzchni płynięcia i zniszczenia:

$$\sigma_c = (1-d_c) \cdot E_0 \cdot (\varepsilon_c - \bar{\varepsilon}_c^{pl}),$$ \hspace{1cm} (6.14)

$$\bar{\sigma}_c = \frac{\sigma_c}{(1-d_c)} = E_0 \cdot (\varepsilon_c - \bar{\varepsilon}_c^{pl}).$$ \hspace{1cm} (6.15)

Przebieg zachowania materiału można również ustalić bez testów z jednoosiowego ściskania, a znając jedynie średnią wytrzymałość betonu na ściskanie f_{cm}. Wówczas drugą wartością niezbędną do rozpoczęcia analizy przebiegu zmienności krzywej naprężenie-odkształcenie jest moduł sprężystości podłużnej betonu E_{cm}. Jego wartość można oszacować na podstawie zależności dostępnych w literaturze przedmiotu [PN-EN 1992-1-1]:
\[E_{cm} = 22 \cdot (0,1 \cdot f_{cm})^{0,3}. \]

Kolejnymi wartościami określającymi położenie punktów charakterystycznych na wykresie są odkształcenia przy osiągnięciu wytrzymałości \(\varepsilon_{el} \) a także odkształcenia graniczne przy zniszczeniu \(\varepsilon_{cul} \) (rys. 6.7).

Rys. 6.7. Schematyczna zależność naprężenie-odkształcenie do analizy konstrukcji zgodnie z Eurokodem 2

6.3.5. Identyfikacja parametrów betonu rozciąganaego

Wytrzymałość betonu na rozciąganie w jednoosiowym stanie naprężenia, ze względu na trudności wykonawcze i duży rozrzut wyników rzadko wyznaczana jest w próbie bezpośredniego rozciągania. Stąd też korzysta się z reguły z metod pośrednich, takich jak rozłupywanie próbek bądź też zginanie beleczek. W przypadku braku badań laboratoryjnych można uzależnić wytrzymałość na rozciąganie od wytrzymałości na ściskanie, zgodnie z [PN-EN 1992-1-1]:

\[f_{cm} = 0,30 \cdot f_{ck}^{(2/3)}. \]

W modelu CDP używa się pojęcia odkształceń rysujących (ang. cracking strain) \(\varepsilon_{c}^{ck} \). Pozwala to uwzględnić zjawisko zwane efektem usztywnienia (tension stiffening). Beton
podczas rozciągania nie jest traktowany jak ciało sprężysto-kruche, lecz uwzględnia się efekty takich zjawisk jak zaszczepianie się kruszywa w rysie oraz przyczepność betonu do stali na odcinku między rysami. Założenie to ma rację bytu przy analizie z rozmytym obrazem zarysowania. Dzięki temu spadek naprężeń w betonie w strefie rozciąganej nie następuje nagle, lecz stopniowo. Odkształcenia po zarysowaniu zdefiniowane są jako różnica odkształceń całkowitych i odkształceń sprężystych dla niezniszczonego materiału:

$$\varepsilon_{ck}^{\text{c}} = \varepsilon_{1} - \varepsilon_{01}^{\text{c}},$$

(6.18)

$$\varepsilon_{01}^{\text{c}} = \frac{\sigma_{f}}{E_{0}}.$$

(6.19)

Z kolei odkształcenia plastyczne $\varepsilon_{1}^{\text{pl}}$ obliczane są analogicznie jak w przypadku ściskania po zdefiniowaniu parametru degradacji d_{i}:

$$d_{i} = d_{i}(\varepsilon_{1}^{\text{pl}}, f_{i}) \text{ gdy } 0 \leq d_{i} \leq 1. \quad (6.20)$$

W celu zbudowania krzywej naprésenie-odkształcenie dla betonu przy jednoosiowym rozciąganiu należy określić postać funkcji osłabienia (rys. 6.8).

![Rys. 6.8. Krzywa naprésenie-odkształcenie betonu przy jednoosiowym rozciąganiu – efekt zesztywnienia](image)

Zgodnie z Abaqus User’s Manual [2012] przy braku danych, naprészenia mogą być redukowane liniowo do zera od momentu osiągnięcia wytrzymałości na rozciąganie
w przypadku odkształceń całkowitych 10-cio krotnie większych niż w momencie osiągnięcia wartości f_{cm}. Dokładny opis tej funkcji wymaga jednak kalibracji modelu z przewidywanymi wynikami w konkretnym przypadku analizy, co zaproponowali min. [Wang i Tsu 2001]:

$$\sigma_i = E_c \cdot \varepsilon_i \quad \text{gdy} \quad \varepsilon_i < \varepsilon_{cr},$$

$$\sigma_i = f_{cm} \left(\frac{\varepsilon_{cr}}{\varepsilon_i} \right)^{0.4} \quad \text{gdy} \quad \varepsilon_i > \varepsilon_{cr},$$

(6.21)

We wzorze (6.21) ε_{cr} oznacza odkształcenie przy zarysowaniu betonu. Jako, że efekt zesztywnienia może znacząco wpływać na wyniki analizy i dodatkowo zależność ta wymaga kalibracji podczas konkretniej symulacji, zaleca się za [Kmiecik i Kamiński 2011] używać modyfikację wzoru Wanga i Tsu, dla funkcji osłabienia:

$$\sigma_i = f_{cm} \left(\frac{\varepsilon_{cr}}{\varepsilon_i} \right)^n \quad \text{gdy} \quad \varepsilon_i > \varepsilon_{cr},$$

(6.22)

gdzie, n oznacza parametr określający tempo osłabienia.

6.3.6. Dodatkowe założenia w modelu materiału

Jak wskazują Kmiecik i Kamiński w [2011] uwzględnienie w analizie pełnej nieliniowości betonu wraz z jego postępującą degradacją w miarę przyrostu naprężeń może powodować problemy związane z otrzymaniem zbieżności rozwiązania. Problemy te są głównie związane z naprężeniami rozciągającymi. Techniki MES oparte na zmniejszeniu rozmiaru przyrostu obciążenia lub zwiększeniu maksymalnej liczby kroków podczas rozwiązania zadania z wykorzystaniem podejścia Newtona-Raphsona mogą okazać się niewystarczające. Stąd też w modelu CDP występuje zmienna $Viscosity$ – parametr wiskotyczny μ, który pozwala niewiele przekroczyć powierzchnię potencjału plastycznego w niektórych, wystarczającymalych krokach zadania czyli służy do regularyzacji równań konstytutywnych. Sama idea regulacji wiskoplastycznej polega na takim doborze parametru ($\mu > 0$), aby stosunek kroku czasowego zadania do wartości μ dążył do nieskończoności. Taki sposób regulacji wymusza kilkukrotny dobór parametru μ, w celu sprawdzenia jak duży ma on wpływ na otrzymane wyniki zadania oraz ustalenie jego wartości minimalnej.
6.4. OPIS MODELU OBLICZENIOWEGO BELKI

6.4.1. Uwagi ogólne

Modelowanie dźwigarów zespolonych [Hernández i in. 2014], w których płyta betonowa jest rozciągana stanowi zadanie trudne i do tego bardziej złożone niż w przypadku płyty ściskanej [Prakash i in. 2011]. Wynika to w dużej mierze z problematyczności w szacowaniu sztywności żelbetowej części elementu rozciąganego, w tym dotyczących określenia współpracy rozciąganej betonu ze zbrojeniem. W analizie dotyczy to przede wszystkim oszacowania:

- momentu inicjującego proces zarysowania i opis morfologii rys,
- zmian sztywności przy zwiększającym się wytężeniu przekroju.

Dodatkowym problemem, w analizie numerycznej takiego modelu, jak wskazują m. in. autorzy prac [Jankowiak I. i Madaj 2011, Wróblewski i in. 2012] jest sposób modelowania zespolenia części stalowej i betonowej przekroju oraz opis mechanizmu uszkodzenia rozciąganej płyty betonowej.

6.4.2. Założenia do modelu belki

Uproszczenia są nierozłącznie związane z każdym modelem obliczeniowym, a zwłaszcza numerycznym, aproksymującym rzeczywistą konstrukcję. W prezentowanej w niniejszym rozdziale analizie przyjęto zatem następujące założenia:
1. Zastosowano model betonu plastycznego ze zniszczeniem CDP,
2. Beton zbrojony przenosi naprężenia rozciągające także po zarysowaniu, tzw. tension stiffening (rys. 6.8),
3. Stal spełnia wymagania materiału liniowo – sprężysto – plastycznego,
4. Zbrojenie (pręty podłużne i strzemiona) zamodelowano w sposób dyskretny, wprowadzając je jako elementy osadzone typu embedded w płycie belki będącej elementem typu host,
5. Zespolenie płyty betonowej z górną półką belki stalowej zrealizowano jako połączenie dyskretnie odwzorowujące występowanie w elementach poddanych badaniom laboratoryjnym sztywnych łączników. Wykorzystano do tego specjalne elementy, tzw. konektory (typu beam) o nieskończonej sztywności na zginanie i ścinnie. Dodatkowo zdefiniowano powierzchnie kontaktowe pomiędzy półką górną belki stalowej a płytą betonową, przyjmując współczynnik tarcia równy \(\mu = 0.5 \).

6.4.3. Dane materiałowe

Wykaz dokładnych cech materiałów użytych w trakcie badań laboratoryjnych przedstawiono w rozdziale 4 oraz w załączniku C. W tablicy 6.2 zestawiono najważniejsze parametry wytrzymałościowe, które posłużyły w symulacjach komputerowych do opracowania modelu materiału betonu oraz stali.

<table>
<thead>
<tr>
<th>Materiał</th>
<th>Wytrzymałość na ściskanie</th>
<th>Wytrzymałość na rozciąganie</th>
<th>Moduł sprężystości</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beton</td>
<td>70.15 MPa</td>
<td>3.82 MPa</td>
<td>43.19 GPa</td>
</tr>
<tr>
<td>Stal</td>
<td>Granica plastyczności</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>belka</td>
<td>355 MPa</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pręty podłużne</td>
<td>281 MPa</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Strzemiona</td>
<td>380 MPa</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Moduł sprężystości</td>
<td>210 GPa</td>
<td></td>
</tr>
</tbody>
</table>

W celu kompleksowego zamodelowania betonu płyty zarówno w strefie ściskania, rozciągania jak i w złożonym stanie naprężenia użyto modelu betonu plastycznego ze zniszczeniem CDP.

przestrzeni naprężeń. W tablicy 6.3 zestawiono przyjęte w analizie numerycznej parametry modelu CDP określające jego zachowanie się w złożonym stanie naprężenia.

Tablica 6.3. Przyjęte parametry modelu CDP w złożonym stanie naprężenia

<table>
<thead>
<tr>
<th>Parametr</th>
<th>Wartość</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dilatation Angle β</td>
<td>36°</td>
</tr>
<tr>
<td>Eccentricity ε</td>
<td>$0,10$</td>
</tr>
<tr>
<td>σ_{lo}/σ_{co}</td>
<td>$1,16$</td>
</tr>
<tr>
<td>K_e</td>
<td>$0,667$</td>
</tr>
<tr>
<td>Viscosity Parameter μ</td>
<td>$0,0001$</td>
</tr>
</tbody>
</table>

Przy identyfikacji parametrów założono, że beton zachowuje się liniowo-sprężystie do $0,4\cdot f_c$ w ściskaniu i do f_t w rozciąganiu. W przypadku ściskania granicę sprężystości jest punkt, opisany wartością naprężeń $28,06$ MPa i odkształceń $0,0006450$. Od wartości naprężeń $28,06$ MPa do wartości $70,15$ MPa beton w ściskaniu się wzmacnia. W tym zakresie ewentualne odciążenie odbywa się po prostej równoległej, którego współczynnik kierunkowy wynosi E_{cm}. W momencie osiągnięcia naprężeń równych $70,15$ MPa beton w ściskaniu się osłabia, co połączone jest również z degradacją sztywności. Po osiągnięciu naprężeń krytycznych dla betonu, następuje zmniejszenie sztywności.

Zależność naprężenie-odkształcenie nieliniowej pracy betonu przy jednoosiowym ściskaniu została odczytana zgodnie z zaleceniami [PN-EN 1992-1-1]:

$$\sigma_c = f_{cm} \cdot \frac{k\eta - \eta^2}{1 + (k-2)\eta} \quad \text{gdy} \quad 0 < \varepsilon_c < \varepsilon_{cut}, \quad (6.23)$$

$$k = 1,05 \cdot E_{cm} \frac{\varepsilon_{cut}}{f_{cm}}, \quad (6.24)$$

$$\eta = \frac{\varepsilon_c}{\varepsilon_{c1}}, \quad (6.25)$$

Przy czym wartości odkształcenia odpowiadające największemu naprężeniu oraz odkształcenia graniczne wyznaczono z:

$$\varepsilon_{c1} = 0,7 \cdot f_{cm}^{0,31} \quad \text{i} \quad \varepsilon_{c1} \leq 2,8, \quad (6.26)$$

$$\varepsilon_{cut} = 2,8 + 27 \cdot [0,01 \cdot (98 - f_{cm})]^{0.9}. \quad (6.27)$$
Przebieg krzywej naprężenie-odkształcenie przedstawiono na rysunku 6.9.

Rys. 6.9. Krzywa naprężenie-odkształcenie betonu ściśkanego wyznaczona wg Eurokodu 2

Następnie dokonano transformacji zmiennych na odkształcenia niesprężyste ε^{n}_e, wg wzorów (6.9) i (6.10) oraz obliczono zmienne degradacji d_e, jako stosunek wartości naprężeń w opadającej gałęzi wykresu do wytrzymałości betonu na ściśkanie. Dzięki temu na podstawie wzoru (6.13) zostaną w trakcie analiz numerycznych wyznaczone odkształcenia plastyczne $\varepsilon^{\text{pl}}_e$. W tablicy 6.4 przedstawiono parametry materiałowe, opisujące zachowanie betonu w ściśkaniu.

<table>
<thead>
<tr>
<th>σ_e [MPa]</th>
<th>ε^{n}_e [-]</th>
<th>d_e [-]</th>
<th>$\varepsilon^{\text{pl}}_e$ [-]</th>
</tr>
</thead>
<tbody>
<tr>
<td>28.06</td>
<td>0.0000000</td>
<td>0</td>
<td>0.0000000</td>
</tr>
<tr>
<td>44.38</td>
<td>0.000113</td>
<td>0</td>
<td>0.000113</td>
</tr>
<tr>
<td>57.87</td>
<td>0.0002924</td>
<td>0</td>
<td>0.0002924</td>
</tr>
<tr>
<td>66.84</td>
<td>0.000576</td>
<td>0</td>
<td>0.000576</td>
</tr>
<tr>
<td>70.15</td>
<td>0.000990</td>
<td>0</td>
<td>0.000990</td>
</tr>
<tr>
<td>69.69</td>
<td>0.001175</td>
<td>0.007</td>
<td>0.001175</td>
</tr>
<tr>
<td>68.24</td>
<td>0.001382</td>
<td>0.027</td>
<td>0.001382</td>
</tr>
</tbody>
</table>

Analogiczne rozważania przeprowadzono w przypadku rozciągania. Zgodnie z wcześniejszymi założeniami przyjęto, że beton zachowuje się sprężysty do naprężeń równych 3,82 MPa. Według wzorów (6.18) i (6.19) wyznaczono odkształcenia rysujące $\varepsilon^{\text{ck}}_i$, na podstawie których przy uwzględnieniu parametru degradacji d_i (przyjęto maksymalną degradację betonu równą 0,99) obliczane są odkształcenia plastyczne $\varepsilon^{\text{pl}}_i$. Na podstawie
kalibracji modelu określono postać funkcji osłabienia, przy założeniu, że naprężenia mogą być redukowane liniowo od momentu osiągnięcia wytrzymałości na rozciąganie. Parametry materiałowe opisujące zachowanie betonu w rozciąganiu zestawiono w tablicy 6.5.

<table>
<thead>
<tr>
<th>σ_i [MPa]</th>
<th>$\bar{\varepsilon}_i^{ek}$ [-]</th>
<th>d_i [-]</th>
<th>$\bar{\varepsilon}_i^{ek}$ [-]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.82</td>
<td>0.00</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>0.38</td>
<td>0.0004</td>
<td>0.99</td>
<td>0.0004</td>
</tr>
</tbody>
</table>

Stal zamodelowano jako ciało liniowo–sprężisto–plastyczne o parametrach uplastycznienia określonych w tablicy 6.2. W trakcie badań laboratoryjnych, w przyjętym zakresie obciążenia nie nastąpiła utrata stateczności geometrycznej dodatkowo wstępne analizy zachowania elementu badawczego wykazały, że nie ma potrzeby definiować plastycznego wzmocnienia materiału.

Dodatkowo model ciała sprężisto-plastycznego dobrze odwzorowuje zachowanie się zwykłej stali i jest najczęściej wykorzystywany w klasycznej teorii plastyczności oraz przy obliczaniu nośności granicznej.

6.4.4. Model obliczeniowy i jego kalibracja

Ze względu na specyfikę modelowanej konstrukcji, która składa się z dwóch różnych materiałów o wyraźnie innej geometrii, do modelu wprowadzono odmienne rodzaje elementów skończonych, najlepiej opisujące składowe belki. Stąd też poszczególne części zamodelowano za pomocą:

- ośmiowęzłowych elementów bryłowych o zredukowanym całkowaniu (C3D8R) - płyta betonowa,
- czterowęzłowych elementów powłokowych o zredukowanym całkowaniu (S4R) - dwuteownik walcowany,
- dwuwęzłowych liniowych elementów belkowych (B31) – pręty zbrojenia głównego oraz strzemiona.

Dyskretyzacji modelu dokonano przy użyciu narzędzi, dostępnych w module *Mesh*, indywidualnie poszczególnych części rozpatrywanej belki (rys. 6.10).
Rys. 6.10. Dyskretyzacja modelu obliczeniowego belki

Tablica 6.6. Dobór metody siatkowania

<table>
<thead>
<tr>
<th>Część składowa modelu</th>
<th>Kształt elementu skończonego</th>
<th>Metoda siatkowania</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belka</td>
<td>Quad (quadrilateral)</td>
<td>Free</td>
</tr>
<tr>
<td>Płyta</td>
<td>Hex (hexahedral)</td>
<td>Structured</td>
</tr>
</tbody>
</table>

Jako podstawowe kryterium rozmiaru siatki przyjęto stosunek długości do szerokości boków równy 1:1. Tablica 6.7 zawiera końcową liczbę elementów i węzłów.

Tablica 6.7. Dobór wielkości elementów skończonych

<table>
<thead>
<tr>
<th>Część składowa modelu</th>
<th>Liczba elementów</th>
<th>Liczba węzłów</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belka</td>
<td>11200</td>
<td>11583</td>
</tr>
<tr>
<td>Pręt podłużny</td>
<td>348</td>
<td>349</td>
</tr>
<tr>
<td>Strzemię</td>
<td>48</td>
<td>48</td>
</tr>
<tr>
<td>Płyta</td>
<td>40250</td>
<td>50544</td>
</tr>
</tbody>
</table>

Model belki obciążono dwiema siłami skupionymi, które przyłożono do węzłów siatki na płycie. W celu uzyskania równomiernego obciążenia na całej powierzchni rozkładu sił na belce (obciążenie w eksperymencie było przekazywane na belkę za pośrednictwem stałowej belezki z podkładką) nałożono na sąsiednie węzły siatki więzy tych samych przemieszczeń pionowych (wymuszenie kinematyczne). Dzięki temu rozłożenie sił skupionych przyjęto na polu o wymiarach 100 x 460 mm. Oprócz tego element badawczy obciążony był ciężarem własnym.
Problemy związane z uzyskaniem zbieżności rozwiązania spowodowane nieliniowością modelu materiału rozwiązano za pomocą stabilizacji wiskotycznej. Zmniejszono również rozmiar przyrostu obciążenia (0,01÷1E-12) oraz zwiększono maksymalną liczbę kroków obciążenia (max 12000) podczas rozwijywania zadania z wykorzystaniem podejścia Newtona-Raphsona. Doboru parametru μ, dokonano iteracyjnie po analizie jak duży ma on wpływ na otrzymane wyniki zadania. Ostatecznie przyjęto μ=0,0001 co pozwoliło rozwiązać zadanie w ponad 1200 przyrostach obciążenia utworzonych w około 4000 iteracji. Z analizy zachowania elementu badawczego wynika, że taka wartość parametru wiskotycznego pozwala na zachowanie kompromisu pomiędzy wielkością obliczeniową zadania a dokładnością otrzymanych wyników.

6.5. WYNIKI ANALIZ NUMERYCZNYCH

6.5.1. Uwagi ogólne

Poprawność założeń modelu MES zweryfikowano zestawiając w formie graficznej na wykresach określone parametry otrzymane z analiz numerycznych z wynikami badań laboratoryjnych a także w przypadku obrazu uszkodzenia w postaci danych wygenerowanych bezpośrednio na elementach skończonych, bez uśredniania danych.

Porównanie wyników wykonano w wybranych przekrojach i punktach pomiarowych zgodnie z rys. 3.5 w rozdziale 3.

6.5.2. Obraz uszkodzenia płyty rozciąganej

Identyfikacja zarysowania płyty została wykonana na podstawie analizy map uszkodzeń zdefiniowanych zmianami wielkości parametru DAMAGET, czyli degradacji sztywności obrazującej zniszczenie materiału.

Należy przy tym pamiętać, że model materiału CDP nie pozwala na kształtowanie się rys w sposób dyskretny z uwzględnieniem wykruszenia się materiału (jego ubytków). Skutkuje on jedynie stopniowym wyłączeniem się ze współpracy elementów skończonych, jednak w ten sposób następuje swoiste ich „sklejenie” i dalszy ich udział w przekazywaniu odkształceń na sąsiednie elementy. Niedoskonałość ta nie ma istotnego wpływu na zachowanie całego elementu badawczego (zaobserwowano zbieżność ścieżki równowagi statycznej).

Przedstawione na rysunku 6.11 mapy uszkodzeń zdefiniowanych parametrem dż mogą być utożsamiane z miejscami pojawienia się rys w płytaach betonowych badanych belek...
zespolonych. Obraz uszkodzeń otrzymany w analizach numerycznych odpowiada jakościowo obrazowi rozkładu rys uzyskanych podczas badań eksperymentalnych (rys. 6.12).

Rys. 6.11. Końcowy obraz zniszczenia materiału (widok góry płyty): degradacja sztywności d_t

![Rys. 6.11. Końcowy obraz zniszczenia materiału (widok góry płyty): degradacja sztywności d_t.](image)

Rys. 6.12. Obraz zarysowania góry płyty badanych belek

Analiza map uszkodzeń zdefiniowanych parametrem d_t pozwala ponadto prześledzić proces powstawania i rozwoju rys przy wzrastającym obciążeniu modelu. W przypadku rozpatrywanej belki pierwsze uszkodzenia betonu płyty pojawiły się w osi podparcia, przy obciążeniu wywołującym naprężenia w betonie równym wytrzymałości betonu na rozciąganie. W początkowej fazie, przy dalszym zwiększaniu obciążenia, kolejne rysy zaczęły pojawiać się jednocześnie z obu stron podparcia, rozprzestrzeniając się w kierunku środka przesła. Dalszy wzrost obciążenia powodował zagęszczanie się stref uszkodzenia (rys). Podobne zjawisko obserwowano w czasie badań empirycznych.

6.5.3. Analiza ugięć i wykresów naprężeń normalnych

Dalszą weryfikację modelu numerycznego przeprowadzono opierając się o zestawienie uzyskanych przemieszczeń badanych belek i modelu numerycznego (rys. 6.13), a także rozkładu naprężeń w badanych belkach i modelu numerycznym (rys. 6.14 i 6.15).
Punkt pomiarowy - U2

![Graph showing comparison between laboratory tests and model MES](image)

Rys. 6.13. Porównanie przemieszczeń pionowych pomierzonych i obliczonych w miejscu przyłożenia obciążenia

Na przedstawionym wykresie widać również, że różnica między sztywnością belki w eksperymencie i sztywnością modelu numerycznego jest zbliżona do siebie. Potwierdza to prawidłowy dobór w modelu betonu zmiennych degradacji d (w szczególności d_i). Ponadto wskazuje, że w przypadku belek zespolonych z płytą rozciąganą dobre odzworowanie daje zespolenie przy wykorzystaniu połączenia punktowego płyty betonowej z dźwigarem stalowym, a więc model zespolenia odzworowujący wiernie rzeczywiste zespolenie. Jest to o tyle istotne, iż w przypadku belki swobodnie podpartej, a więc takiej, w której płytą betonowa jest ściskana, taki model zespolenia jak wskazują autorzy [Jankowiak I. i Madaj 2008] nie odzwierciedla dobrze zachowania badanej belki.

Stopka górna - punkt pomiarowy T13

![Graph comparing top support load and model MES](image)

Rys. 6.14. Porównanie wielkości naprężeń w belce stalowej: przekrój podporowy
Przeprowadzona analiza porównawcza wskazuje, na dobrą zgodność otrzymanych wyników badań eksperymentalnych i numerycznych a także ogólną zgodność modelu obliczeniowego z założeniami dotyczącymi hipotez wytrzymałościowych materiału.

6.6. WNIOSKI Z PRZEPROWADZONYCH SYMULACJI

Przeprowadzone analizy numeryczne i uzyskane w ich wyniku rezultaty pozwalają na sfomułowanie następujących wniosków:

1. Opanowanie efektywnego narzędzia do obliczeń komputerowych umożliwia prowadzenie szeregu interesujących analiz parametrycznych.

2. Szczegółowa analiza belek zespolonych stalowo-betonowych z płytą rozciągą (z określeniem pełnej ścieżki równowagi statycznej) możliwa jest do przeprowadzenia przy zastosowaniu metody elementów skończonych i algorytmów nieliniowej statyki.

5. W przypadku analizy belek zespolonych stalowo – betonowych z betonową płytą rozciągą wyniki bardziej odpowiadające rzeczywistej pracy belki można uzyskać przy zastosowaniu punktowego zespolenia belki z płytą.

6. Właściwy opis betonu rozciąganej, uwzględniający jego zachowanie po zarysowaniu, ma duży wpływ na zgodność wyników analiz numerycznych z wynikami badań empirycznych. Wprowadzenie do analizy parametru uszkodzenia
betonu przy rozciąganiu d_i umożliwia analizę zarysowania płyty na każdym poziomie obciążenia belki.

7. Zastosowany sposób modelowania numerycznego betonowej płyty rozciąganej oraz jej połączenia z belką stalową pozwala w sposób precyzyjny określić poziom deformacji i uszkodzenia płyty rozciąganej na każdym poziomie obciążenia belki zespolonej.

8. W przypadku belek ciągłych zachodzi konieczność różnicowania modelowania zespolenia części stalowej i betonowej, w zależności od rozkładu momentów zginających na długości belki.
7. PODSUMOWANIE

Obecnie w projektowaniu konstrukcji zespolonych statycznie niewyznaczalnych nie uwzględnia się wpływu sztywności betonu rozciąganego (zarysowanego). Tymczasem w mostach zespolonych uwzględnianie sztywności betonu rozciąganego jest zgodne z rzeczywistym zachowaniem się konstrukcji. Wówczas do określania sił wewnętrznych i momentów w elemencie rozciągającym w stanie granicznym nośności i użytkowności, w analizie globalnej należy rozważać nieliniowe zachowanie się konstrukcji na skutek zarysowania betonu i efekty współpracy betonu na odcinkach między rysami. Rozważanie efektu sztywności zarysowanego betonu wymaga uwzględnienia dystrybucji sił wewnętrznych, co powoduje, że jeżeli w globalnej analizie sprężystej zastosowana została metoda uwzględniająca wpływy zarysowania, to powinna być ona stosowana nie tylko dla elementu rozciągającego, ale całej konstrukcji.

Przeprowadzone analizy, badania oraz symulacje komputerowe dały wiele interesujących wyników, które pozwoliły przede wszystkim osiągnąć zasadniczy cel rozprawy doktorskiej, jakim było wykazanie słuszności sformułowanej na wstępie tezy.

Dowód pierwszy tezy znajduje się głównie w punktach 4.2.2+4.2.4, w których na podstawie analizy otrzymanych wyników badań doświadczalnych określono zachowanie się konstrukcji zespolonej z rozciągana płyta współpracującą w warunkach laboratoryjnych. Potwierdzono znane hipotezy, a także ustalono zależności między zarysowaniem płyty betonowej a rzeczywistym położeniem osi obojeńnej, sztywnością belek zespolonych oraz wpływ wzrastającego obciążenia na zmiany sztywności w zakresie odkształceń eksploatacyjnych.

Dowód drugi tezy przejawia się między innymi w ocenie wpływu współdziałania betonu między rysami w przenoszeniu zginania działającego na przekrój zespolony przeprowadzonej w punkcie 5.4. Z analizy wynika, że dokonując rozdziału obciążenia w zginanym przekroju zespolonym na część betonową oraz stalową możemy element betonowy traktować, jako pręt
obciążony silą normalną a także momentem zginającym. Zanim obciążenie osiągnie wartość powodującą zarysowanie betonu, obciążenie jest przejmowane przez beton i stal. Po zarysowaniu główną część obciążenia przejmuje zbrojenie. Jednakże na skutek współpracy stali zbrojeniowej z betonem, siła normalna przenoszona przez rozciąganą płytę betonową, jest większa od przenoszonej przez samo zbrojenie. Obserwowany efekt współpracy zbrojenia i rozciąganego betonu jest określany jako efekt tzw. usztywnienia przy rozciąganiu (Tension Stiffening).

W fazie przed zarysowaniem wartość siły przenoszonej przez beton rośnie w tej samej proporcji jak wartość obciążenia przejmowanego przez zbrojenie płyty. Po zarysowaniu następuje stopniowe zmniejszenie się udziału betonu w przenoszeniu siły normalnej obciążającej płytę, by po ustabilizowaniu się obrazu zarysowania osiągnąć prawie niezmieniony poziom, co pokazano na rysunku 7.1.

Jest to stan zbliżony do rozciąganej pręta zbrojonego. W efekcie zauważalny jest zmienny przyrost krzywizny belki na odcinku z rozciągana płytą. Zakładając stałą wartość modulu sprężystości betonu i niepodatne zespolenie, to w praktyce, w zakresie pracy sprężystej można wyróżnić trzy przedziały zmian krzywizny:

„1” – moment zginający mniejszy od momentu rysującego \((M_{cr})\),

„2” – moment zginający większy od momentu rysującego \((M_{cr})\) a mniejszy od momentu wywołującego ustabilizowany układ rys \((M_{CE})\),

„3” – moment zginający większy od momentu wywołującego ustabilizowany układ rys \((M_{CE})\).
Jeżeli w przedziałach „1” i „3” przyrost krzywizny jest w przybliżeniu liniowo wprost proporcjonalny do przyrostu momentu zginającego, to wówczas w przedziale „2” następuje niestabilny przyrost krzywizny, o obwiedni odpowiadającej średniej zmianie krzywizny, będącej również funkcją liniową.

Skokowy przyrost krzywizny w przekroju z rysą (skokowe zmniejszenie sztywności) następuje w wyniku powstania kolejnej rysy. Przy dalszym wzroście obciążenia następuje etap stabilizacji, aż do obciążenia wywołującego powstanie kolejnej rysy. Gdy rozstaw rys odpowiada wartości minimalnej w danego typu rozciągany pręcie, następuje koniec tej fazy.

Rys. 7.2. Wykres odkształceń w przekroju zespolonym i w zbrojonej płycie, przy obciążeniu momentem zginającym powodującym rozciąganie przekroju betonowego

Uwzględniając opisany charakter rozkładu sił w zginanym stalowo-betonowym przekroju zespolonym (rys. 7.2) oraz opierając się o liczne badania prowadzone, przez różnych autorów, np. [Kindmann 1990], można traktować beton rozciąganej płyty zespolonej jak rozciągany pręt żelbetowy.

Dowód trzeci tezy zawarty jest w rozdziale 6, w punkcie 6.5. Na podstawie przeprowadzonej w nim analizie i uzyskanych wyników stwierdzono, że właściwy opis betonu rozciąganej, uwzględniającego jego zachowanie po zarysowaniu, ma duży wpływ na zgodność z wynikami badań empirycznych a także pozwala w sposób precyzyjny określić poziom deformacji i uszkodzenia płyty na każdym poziomie obciążenia.

Jako dalszy kierunek prac, autor widzi opracowanie technologii wykonywania i algorytmu obliczeniowego ciągłych dźwigarów mostowych o konstrukcji zespolonej typu stal-beton z uwzględnieniem sztywności betonu rozciąganej przy zachowaniu aspektów
wytrzymałościowych i ekonomicznych. W tym celu konieczne jest jeszcze przeprowadzenie badań uwzględniających następujące zagadnienia:

- wysoki stopień podłużnego zbrojenia płyty betonowej (powyżej 3%),
- interakcję między stalową półką górną i zbrojeniem,
- zależność między zbrojeniem poprzecznym płyty i obrazem poprzecznego zarysowania,
- podatność zespolenia i zmniejszenie jego sztywności po zarysowaniu betonu,
- skurcz i pełzanie betonu,
- wpływ odkształceń termicznych.

64. Łagoda M., 1981, Stan graniczny podatności łączników w mostowych konstrukcjach zespolonych, Praca doktorska, IBDiM, Warszawa.

69. Łagoda M., 2003, Zagadnienia próbnich obciążeń w diagnostyce mostów, II Sympozjum „Badania i Diagnostyka Mostów”, Opole, s. 249–256.

72. Łodygowski T., 1996, Theoretical and numerical aspects of plastic strain localization, Rozprawy 312, Wydawnictwa Politechniki Poznańskiej, Poznań.
87. PN-82/S-10052, Obiekty mostowe, Konstrukcje stalowe, Projektowanie.
88. PN-91/S-10042, Obiekty mostowe, Konstrukcje betonów, żelbetowe i sprężone, Projektowanie.
89. PN-EN 1991-1-1 Eurokod 1, Oddziaływania na konstrukcje, Część 1-1: Oddziaływania ogólne, Ciężar objętościowy, ciężar własny, obciążenie użytkowe w budynkach.

90. PN-EN 1992-1-1 Eurokod 2, Projektowanie konstrukcji z betonu, Część 1-1: Reguły ogólne i reguły dla budynków.

92. PN-EN 12390-3, Badania betonu, Część 3: Wytrzymałość na ściskanie próbek do badań.

93. PN-EN 12390-6, Badania betonu, Część 6: Wytrzymałość na rozciąganie przy rozlupywaniu próbek do badań.

103. Śledziewski K., 2012, Sztywność zarysowanego betonu w ciągłych belkach zespołowych typu stal – beton według PN-EN 1994-2, Drogownictwo, nr 1, s. 12–16.

Załącznik A: Stanowisko laboratoryjne

Fot. A.1. Widok stanowiska badawczego

Fot. A.2. Stanowisko pomiarowe i stanowisko obsługi siłowników hydraulicznych
Załącznik B: Dokumentacja fotograficzna przebiegu badań doświadczalnych

Fot. B.1. Widok belki stalowej z łącznikami sworzniowymi

Fot. B.2. Element badawczy przygotowany do betonowania płyty

Fot. B.3. Montaż tensometrów na zbrojeniu podłużnym płyty
Fot. B.4. Próbki do badań cech materiałowych betonu

Fot. B.5. Betonowanie płyty górnej

Fot. B.6. Widok elementu badawczego po zabetonowaniu
Fot. B.7. Wymuszone kształtowanie rysy szerokości 10 cm z każdej strony

Fot. B.8. Widok belki umieszczonej na stanowisku badawczym

Fot. B.9. Realizacja obciążenia zewnętrznego
Fot. B.10. Konstrukcja rozkładająca obciążenie na pasmo poprzeczne

Fot. B.11. Przekazanie sił za pomocą belki trawersowej

Fot. B.12. Układ tensometrów na zbrojeniu podłużnym
Fot. B.13. Układ tensometrów na belce stalowej

Fot. B.14. Układ tensometrów na płycie betonowej

Fot. B.15. Spособ podparcia elementów badawczych

Fot. B.17. Końcowy układ rys w strefie nadpodporowej belki B3
Fot. B.18. Pomiar ugięć belki

Fot. B.19. Pomiar przemieszczeń belki nad podporami

Fot. B.20. Pomiar kąta obrotu na końcach belki
Fot. B.21. Pomiar poślizgu płyty
Załącznik C: Atesty stali i receptura mieszanki betonowej

Dodatkowe informacje dotyczące cech materiałowych uzyskano od producentów, korzystając z atestów stali zbrojeniowej oraz receptury mieszanki betonowej.

C1. Stal zbrojeniowa – pręty podłużne
C2. Stal zbrojeniowa – strzemiona

ZALĄCZNIK C: ATESTY STALI KONSTRUKCYJNEJ I ZBROJENIOWEJ

POLAN
NR FAKSU: 3413451668
20 MAR. 2014 12:31
STR. 1

ŚWIADCZENIE ODBIORU 3.1
INSPECTION CERTIFICATE 3.1
ABNAHMEPRÜFZEUGNIS 3.1
PN-EN 10204

26.02.2014
1437844
81190327
TK76851

WYNIKI ODPOWIEDZIALNE
 tổ I. SPECYFIKA
zu P00125102
WG 5.8_G36H1_P_MO

1. WYMIAR CHIMICZNY/ CHEMICAL COMPOSITION/ CHEMISCHE ZUSAMMENSETZUNG

<table>
<thead>
<tr>
<th>Element</th>
<th>C</th>
<th>Mn</th>
<th>Si</th>
<th>P</th>
<th>S</th>
<th>Cu</th>
<th>Ni</th>
<th>Cr</th>
<th>Mo</th>
<th>Sn</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>0.004</td>
<td>0.010</td>
<td>0.0010</td>
<td>0.030</td>
<td>0.32</td>
<td>0.092</td>
<td>0.003</td>
<td>0.0014</td>
<td>0.004</td>
<td>0.002</td>
</tr>
</tbody>
</table>

LÓŻKA MECHANICZNE
MECHANICAL TESTS/ MECHANISCHE UNTERSUCHUNGEN

<table>
<thead>
<tr>
<th>Test</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.3</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>2</td>
<td>0.3</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>3</td>
<td>0.3</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>4</td>
<td>0.3</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>5</td>
<td>0.3</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>6</td>
<td>0.3</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.1</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Materiał: Stal zbrojeniowa – strzemiona

"Polan" Marian Zacharz
Przedażbiułowna Wielobranzowa
Ul. Skrajna 80B
26-660 Kielce

N. nr zleczenia nr
Order no. ZA2014-001

Zamawiajcy:
Customer:

Rok wydania akceptacji
Year: 2014

Zaproszenie nr
Purchase order nr

Zgodność z wymaganiami:
Compliance with requirements:

Zatwierdzono:
Approved:

Wykonane przez:
Done by:

26.02.2014
02.03.2014

Zakupiono:
Purchased:

"Polan" Marian Zacharz
Przedażbiułowna Wielobranzowa
Ul. Skrajna 80B
26-660 Kielce

N. nr zleczenia nr
Order no. ZA2014-001

Zamawiajcy:
Customer:

Rok wydania akceptacji
Year: 2014

Zaproszenie nr
Purchase order nr

Zgodność z wymaganiami:
Compliance with requirements:

Zatwierdzono:
Approved:

Wykonane przez:
Done by:

26.02.2014
02.03.2014

Zakupiono:
Purchased:

"Polan" Marian Zacharz
Przedażbiułowna Wielobranzowa
Ul. Skrajna 80B
26-660 Kielce
C3. Receptura mieszanki betonowej

![Image](image-url)

PROJEKT SKŁADU BETONU

wg PN-88/B-06250, STW/DRB M13.01.00

<table>
<thead>
<tr>
<th>Kod receptury:</th>
<th>25/30/STW/24/01/13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zleceniodawca:</td>
<td>SIBET Kielce</td>
</tr>
</tbody>
</table>

Nazwa budowy:

- **Przeznaczenie betonu:** Beton DROGOWO-MOSTOWY
- **Miejsce produkcji:** SIBET Kielce, UL. Chorzowska
- **Klasy betonu:** C25/30
- **Konsystencja mieszanki betonowej:** K-5 po 30 min
- **Maksymalny wymiar kruszywa:** 16 mm
- **Klasa ekspozycji:** WB
- **Dodatkowe wymagania:** F150 N64%

Sposób wbudowania mieszanki: wilbrowanie

Sposób zagęszczania mieszanki: wilbrowanie

Metody badań oraz ocena zgodności: wg PN-88/B-06250, PN-EN 206-1:203

I. Skład laboratoryjny mieszanki betonowej na 1 m³ zarołu (dla składników w stanie suchym)

<table>
<thead>
<tr>
<th>Składnik</th>
<th>Pochodzenie</th>
<th>Skład na 1 m³</th>
<th>Gęstość (kg/dm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEM I/SN M5R/NA</td>
<td>Warta</td>
<td>360</td>
<td>3,10</td>
</tr>
<tr>
<td>Woda</td>
<td>Wodociąg</td>
<td>0</td>
<td>1,90</td>
</tr>
<tr>
<td>Piasek 0/2</td>
<td>Kraj</td>
<td>677</td>
<td>2,65</td>
</tr>
<tr>
<td>Grys 2/8</td>
<td>Wilków</td>
<td>513</td>
<td>3,10</td>
</tr>
<tr>
<td>Grys 8/16</td>
<td>Wilków</td>
<td>834</td>
<td>3,10</td>
</tr>
<tr>
<td>Zwiń 2/16</td>
<td>0</td>
<td>2,65</td>
<td></td>
</tr>
<tr>
<td>AER 200S/35</td>
<td>Sika</td>
<td>0,43</td>
<td>0,12%</td>
</tr>
<tr>
<td>VC 21 ST</td>
<td>Sika</td>
<td>2,16</td>
<td>0,60%</td>
</tr>
</tbody>
</table>

II. Własności mieszanki betonowej

<table>
<thead>
<tr>
<th>Sp.</th>
<th>Rodzaj cechy</th>
<th>Jednostka</th>
<th>Wartość</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>W/C</td>
<td>-</td>
<td>0,417</td>
</tr>
<tr>
<td>2</td>
<td>W/(C+S+D)</td>
<td>-</td>
<td>0,417</td>
</tr>
<tr>
<td>3</td>
<td>Objętość rączny</td>
<td>[dm³]</td>
<td>270</td>
</tr>
<tr>
<td>4</td>
<td>Objętość zaprawy</td>
<td>[dm³]</td>
<td>539</td>
</tr>
<tr>
<td>5</td>
<td>Punkt uspokowy</td>
<td>[%]</td>
<td>35,7</td>
</tr>
<tr>
<td>6</td>
<td>Klasa zawartości chlorków</td>
<td>Cl</td>
<td>0,2</td>
</tr>
<tr>
<td>7</td>
<td>Zawartość cząstk < 0,125 mm</td>
<td>[kg/m³]</td>
<td>444</td>
</tr>
<tr>
<td>8</td>
<td>Zawartość cząstk < 0,25 mm</td>
<td>[kg/m³]</td>
<td>536</td>
</tr>
<tr>
<td>9</td>
<td>Gęstość teoretyczna mieszanki</td>
<td>[kg/m³]</td>
<td>2539</td>
</tr>
<tr>
<td>10</td>
<td>Założona zawartość powietrza</td>
<td>[% obj]</td>
<td>4,0</td>
</tr>
</tbody>
</table>

2013-05-29

Strona 1 z 2
III. Cechy mieszanki betonowej

<table>
<thead>
<tr>
<th>Nr</th>
<th>Parametry mieszanki betonowej</th>
<th>Czas [min]</th>
<th>Jednostka</th>
<th>Wartość</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Konsystencja mieszanki betonowej</td>
<td>10</td>
<td>cm opadu</td>
<td>17.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30</td>
<td></td>
<td>18.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>90</td>
<td>stożka</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Zawartość powietrza w mieszance</td>
<td></td>
<td>% obj.</td>
<td>5.1</td>
</tr>
<tr>
<td>3</td>
<td>Gęstość mieszanki betonowej</td>
<td></td>
<td>kg/m³</td>
<td>2.49</td>
</tr>
</tbody>
</table>

* Czas liczyony od momentu dodania wody zarobowej.

IV. Cechy stwardniałego betonu

<table>
<thead>
<tr>
<th>Nr</th>
<th>Ród cechy</th>
<th>Czas [dni]</th>
<th>Jednostka</th>
<th>Wartość</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mrozoodporność wg PN-88/B-06250</td>
<td></td>
<td>Stopień F</td>
<td>150</td>
</tr>
<tr>
<td>2</td>
<td>Wodoszczelność wg PN-88/B-06250</td>
<td></td>
<td>Stopień W</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>Nasiąkliwość wg PN-88/B-06250</td>
<td></td>
<td>%</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>Wodoszczelność wg PN-EN 206-1</td>
<td></td>
<td>mm</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Rozwój wytrzymałości</td>
<td></td>
<td>fcm²/fcm²</td>
<td>28</td>
</tr>
<tr>
<td>6</td>
<td>Wytrzymałość na ściskanie</td>
<td>2</td>
<td>[Mpa]</td>
<td>30.38</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td></td>
<td>44.02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>28</td>
<td></td>
<td>50.93</td>
</tr>
<tr>
<td></td>
<td></td>
<td>90</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

** Czas liczyony od momentu zaformowania próbek

V. Ustalenie stosu przenikowego mieszanki mineralnej

[Diagram]

Krzysy uzuarnienia podana w zalecanych krzywych granicznych dla grup frakcji krzywy wa 0 - 16 mm wg PN-88/B-06250.

VI. Informacje dodatkowe

1. Na podstawie powyższej receptury należy określić recepturę roboczą uwzględniającą bieżącze zawilgocenie kruszyw, jak również pojemność urządzenia mieszczącego.
2. Zmiana parametrów zastosowanych kruszyw wymaga korektę składu mieszanki betonowej wraz ze sprawdzeniem jej przez wykonanie zarołów próbnich oraz przeprowadzenie badań na świeżej mieszance betonowej i stwardniałym betonie.

Opracował: mgr inż. Włodzimierz Pokładowski

Zatwierdził:

2013-05-29
Praca stalowo-betonowej belki zespolonej
z uwzględnieniem zarysowania płyty

Streszczenie
W rozprawie przedstawiono wybrane zagadnienia związane z zachowaniem się belek zespolonych typu stal-beton z uwzględnieniem zarysowania płyty. Analizie poddano belki dwuprzepłowe, jako układy ciągłe, w których zespolenie między częścią stalową a betonową zapewniały łączniki sprężyste w postaci sworzni.

Podstawą do podjęcia takiej tematyki było traktowanie tego zagadnienia w dotychczasowych badaniach marginalnie i skupianie się głównie na określeniu nośności granicznej całego przekroju zespolonego, bądź też jego poszczególnych części składowych. Punktem wyjścia do osiągnięcia zasadniczego celu pracy jakim było rozpoznanie i sprecyzowanie naukowych podstaw uwzględnienia sztywności zarysowanego betonu w konstrukcji zespolonej stały się badania laboratoryjne zespolonych dźwigarów próbkowych o zbliżonej skali do rzeczywistej, które zostały poprzedzone analizą stanu wiedzy w dziedzinie konstrukcji zespolonych, w szczególności konstrukcji statycznie niewyznaczalnych z betonem w strefach rozciąganych. Przedstawiono także podstawowe – ale związane z główną tematyką pracy – zagadnienia dotyczące nośności i sztywności belek zespolonych oraz dotychczasową praktykę projektową. Analizowano również zachowanie się konstrukcji zespolonej z rozciągą płyta współpracującą w warunkach rzeczywistych. W tym celu przeprowadzono analizę obliczeniową wybranego obiektu mostowego, zawierającą ocenę współdziałania betonu między rysami w przenoszeniu zginania działającego na przekrój zespolony. Dodatkowo wyznaczone średnie odległości między powstałymi rysami i ich szerokość rozwarcia. Istotną częścią pracy jest również budowa modeli numerycznych (MES), które zostały wykorzystane do przeprowadzenia obliczeń konstrukcji poddanych badaniom laboratoryjnym. Przeprowadzono również analizę związku konstytutywnego betonu plastycznego ze zniszczeniem wraz z identyfikacją i interpretacją jego parametrów konstytutywnych. Omawiany model betonu został użyty i zweryfikowany przy opisie materiału w zginaniu (symetrycznym) belki zespolonej. Wyniki badań zawarto we wnioskach.

Słowa kluczowe: belka zespolona, beton zarysowany, sztywność, badania doświadczalne, analizy numeryczne, model betonu plastycznego ze zniszczeniem (CDP).
Operation of a steel-concrete composite beam
considering slab cracking

Abstract
The dissertation discusses selected issues related to the behavior of steel-concrete composite beams, including the phenomenon of slab cracking. The analysis focused on double span beams as continuous systems, where the bond between steel and concrete was ensured by elastic joints in the form of pins.

The reason to address this matter is the fact the majority of studies so far have disregarded it, concentrating mainly on the issue of determination of the load bearing capacity of whole composite sections – or of particular components thereof. The point of departure for arriving at the essential objective of the paper, which involves identification and specification of the scientific basis of taking the issue of stiffness of cracked concrete in composite structures, were laboratory tests of composite trial girders of a near-real scale, preceded by an analysis of the state-of-the-art in the field of composite structures, especially with respect to statically indeterminate structures with concrete in zones under tension. The paper features also fundamental – but related to the main theme – issues concerning the load bearing capacity and the stiffness of composite beams and the current design practice. The analysis covered also the behavior of composite structure with support slab under tension in field conditions. To this end, a computational analysis for a chosen bridge structure has been carried out, including an evaluation of interaction between concrete and cracks in the scope of transfer of the bending strength exerted on a given composite section. Moreover, mean distances between cracks and crack mouth opening displacement have been determined.

A significant part of the paper has been also devoted to formation of numerical models (finite elements method) used to carry out calculations for structures subject to laboratory tests. An analysis of the constitutive relation between plastic concrete and destruction, including interpretation of its constitutive parameters has been also carried out. The discussed model of concrete has been used and verified in the description of material in (symmetric) bending of composite beams. The test results are included in the proposals.

Keywords: composite beam, concrete cracking, stiffness, laboratory test, numerical analysis, Concrete Damage Plasticity.